Skip to main content
Log in

SOI LDMOSFET with Up and Down Extended Stepped Drift Region

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To increase the breakdown voltage and decrease the ON resistance, a silicon-on-insulator (SOI) lateral double-diffused metal–oxide–semiconductor field-effect transistor (LDMOSFET) in which the drift region extends to the up and down oxides in a step shape is proposed. This up and down extended stepped drift SOI (UDESD-SOI) structure demonstrates a modified lateral electric field distribution with additional peaks as well as a decrease of the usual peaks near the drain and gate. Two-dimensional (2D) simulations were used to compare the characteristics of the proposed UDESD-SOI structure with those of other structures, viz. down extended stepped drift SOI (DESD-SOI), up extended stepped drift SOI (UESD-SOI), and conventional SOI (C-SOI). Under the same conditions, the breakdown voltage of the UDESD-SOI structure was nearly 35%, 117%, and 318% higher compared with the DESD-SOI, UESD-SOI, and C-SOI structure, respectively. To determine the optimum parameters for the UDESD-SOI structure leading to the highest breakdown voltage, a comparative study was performed to investigate the effect of the doping concentration in the drift region, buried oxide (BOX) thickness, and thickness of up and down extended steps (T 1 and T 2, respectively). In addition, the drain current (ON resistance) of the UDESD-SOI structure was found to be 13%, 43%, and 229% higher (16%, 65%, and 257% lower) than the values for the DESD-SOI, UESD-SOI, and C-SOI structure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Udrea, D. Garner, K. Sheng, A. Popescu, H.T. Lim, and V.I. Milne, Electron. Commun. Eng. J. 12, 27 (2000).

    Article  Google Scholar 

  2. J.-P. Colinge, ed., IEEE, International Electron Devices Meeting (IEDM) (Washington, DC: IEEE, 1989). doi:10.1109/IEDM.1989.74178.

  3. J.R. Schwank, V. Ferlet-Cavrois, M.R. Shaneyfelt, P. Paillet, and P.E. Dodd, IEEE Trans. Nucl. Sci. 50, 522 (2003).

    Article  Google Scholar 

  4. P. Francis, A. Terao, B. Gentinne, D. Flandre, and J.P. Colinge, IEDM., 353 (1992).

  5. E. Arnold, J. Electrochem. Soc. 141, 1983 (1994).

    Article  Google Scholar 

  6. A. Elhami Khorasani, M. Griswold, and T.L. Alford, IEEE Electron Device Lett. 35, 1079 (2014).

    Article  Google Scholar 

  7. A.A. Orouji and M. Mehrad, IEEE Trans. Electron Devices 59, 419 (2012).

    Article  Google Scholar 

  8. X. Luo, B. Zhang, and Z. Li, IEEE Trans. Electron Devices 55, 1756 (2008).

    Article  Google Scholar 

  9. A.A. Orouji, S. Sharbati, and M. Fathipour, IEEE Trans. Device Mater. Reliab. 9, 449 (2009).

    Article  Google Scholar 

  10. S.E. Jamali Mahabadi, A.A. Orouji, P. Keshavarzi, and H.A. Moghadam, Semicond. Sci. Technol. 26, 095005-1 (2011).

    Article  Google Scholar 

  11. A.A. Orouji, S.E. Jamali Mahabadi, and P. Keshavarzi, Superlattices Microstruct. 50, 449 (2011).

    Article  Google Scholar 

  12. M. Mehrad and A.A. Orouji, Mater. Sci. Semicond. Process. 16, 1977 (2013).

    Article  Google Scholar 

  13. I.J. Kim, S. Matsumoto, T. Sakai, and T. Yachi, IEEE Electron Device Lett. 15, 148 (1994).

    Article  Google Scholar 

  14. M. Mehrad and A.A. Orouji, Superlattices Microstruct. 57, 77 (2013).

    Article  Google Scholar 

  15. X. Luo, Y. Wang, H. Deng, J. Fan, T. Lei, and Y. Liu, IEEE Trans. Electron Devices 57, 535 (2010).

    Article  Google Scholar 

  16. A.A. Orouji and M. Mehrad, Superlattices Microstruct. 51, 412 (2012).

    Article  Google Scholar 

  17. S.E. Jamali Mahabadi, S. Rajabi, and J. Loiacono, Superlattices Microstruct. 85, 872 (2015).

    Article  Google Scholar 

  18. M. Saremi, B. Ebrahimi, A. Afzali-Kusha, and S. Mohammadi, Microelectron. Reliab. 51, 2069 (2011).

    Article  Google Scholar 

  19. Silvaco ATLAS Device Simulator Silvaco Inc., Santa Clara, CA. http://www.silvaco.com/products/device_simulation/atlas.html. Accessed June 2017.

  20. S.E. Jamali Mahabadi, Superlattices Microstruct. 89, 345 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Saremi or Arash Yazdanpanah Goharrizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saremi, M., Saremi, M., Niazi, H. et al. SOI LDMOSFET with Up and Down Extended Stepped Drift Region. J. Electron. Mater. 46, 5570–5576 (2017). https://doi.org/10.1007/s11664-017-5645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5645-z

Keywords

Navigation