Skip to main content
Log in

Performance Analysis of a Pt/n-GaN Schottky Barrier UV Detector

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrical and optical characteristics of an n-type gallium nitride (GaN)-based Schottky barrier ultraviolet (UV) detector, where a platinum (Pt) metal layer forms the anode contact, have been evaluated by means of detailed numerical simulations considering a wide range of incident light intensities. By modeling the GaN physical properties, the detector current density–voltage characteristics and spectral responsivity for different (forward and reverse) bias voltages and temperatures are presented, assuming incident optical power ranging from 0.001 W cm−2 to 1 W cm−2. The effect of defect states in the GaN substrate is also investigated. The results show that, at room temperature and under reverse bias voltage of −300 V, the dark current density is in the limit of 2.18 × 10−19 A cm−2. On illumination by a 0.36-μm UV uniform beam with intensity of 1 W cm−2, the photocurrent significantly increased to 2.33 A cm−2 and the detector spectral responsivity reached a maximum value of 0.2 A W−1 at zero bias voltage. Deep acceptor trap states and high temperature strongly affected the spectral responsivity curve in the considered 0.2 μm to 0.4 μm UV spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wang, K. Fu, C.S. Yao, D. Su, G.G. Zhang, J.Y. Wang, and M. Lu, Nucl. Instrum. Methods A 663, 10 (2012).

    Article  Google Scholar 

  2. M.S.P. Reddy, A.A. Kumar, and V.R. Reddy, Thin Solid Films 519, 3844 (2011).

    Article  Google Scholar 

  3. I.H. Lee, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, V.M. Zaletin, I.M. Gazizov, N.G. Kolin, and S.J. Pearton, J. Vac. Sci. Technol., B 30, 021205 (2012).

    Article  Google Scholar 

  4. L.C. Chen, C.Y. Hsu, W.H. Lan, and S.Y. Teng, Solid State Electron. 47, 1843 (2003).

    Article  Google Scholar 

  5. R. Werner, M. Reinhardt, M. Emmerling, A. Forchel, V. Harle, and A. Bazhenov, Physica E 7, 915 (2000).

    Article  Google Scholar 

  6. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, E.A. Kozhukhova, I.M. Gazizov, N.G. Kolin, D.I. Merkurisov, V.M. Boiko, A.V. Korulin, V.M. Zalyetin, S.J. Pearton, I.H. Lee, A.M. Dabiran, and P.P. Chow, J. Appl. Phys. 106, 103708 (2009).

    Article  Google Scholar 

  7. P. Mulligan, J. Wang, and L. Cao, Nucl. Instrum. Methods Phys. Res. (A) 719, 13 (2013).

    Article  Google Scholar 

  8. F.H. Li, X. Gao, Y.L. Yuan, J.S. Yuan, and M. Lu, Sci. China Technol. Sci. 57, 25 (2014).

    Article  Google Scholar 

  9. Z.J. Cheng, X.Y. Chen, H.S. San, Z.H. Feng, and B. Liu, J. Micromech. Microeng. 22, 074011 (2012).

    Article  Google Scholar 

  10. C.S. Yao, K. Fu, G. Wang, G.H. Yu, and M. Lu, Phys. Status Solidi A 209, 204 (2012).

    Article  Google Scholar 

  11. J.Y. Duboz, E. Frayssinet, S. Chenot, J.L. Reverchon, and M. Idir, Appl. Phys. Lett. 97, 163504 (2010).

    Article  Google Scholar 

  12. Y.Q. Yu, L.B. Luo, M.Z. Wang, B. Wang, L.H. Zeng, C.Y. Wu, J.S. Jie, J.W. Liu, L. Wang, and S.H. Yu, Nano Res. 8, 1098 (2015).

    Article  Google Scholar 

  13. J. Li, M. Zhao, and X.F. Wang, Phys. B 405, 996 (2010).

    Article  Google Scholar 

  14. E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytür, IEEE J. Sel. Top. Quantum Electron. 10, 742 (2004).

    Article  Google Scholar 

  15. Q. Chen, J.W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M.Z. Anwar, and M. Asif Khan. Appl. Phys. Lett. 70, 2277 (1997).

    Article  Google Scholar 

  16. P. Mulligan, J. Wang, and L. Cao, Nucl. Instrum. Methods A 719, 13 (2013).

    Article  Google Scholar 

  17. Q. Chen, M.A. Khan, C.J. Sun, and J.W. Yang, Electron. Lett. 31, 1781 (1995).

    Article  Google Scholar 

  18. G. Parish, S. Keller, P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S.B. Fleischer, S.P. Den Baars, U.K. Mishra, and E.J. Tarsa, Appl. Phys. Lett. 75, 247 (1999).

    Article  Google Scholar 

  19. A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, Phys. Status Solidi A 188, 293 (2001).

    Article  Google Scholar 

  20. E. Monroy, M. Hamilton, D. Walker, P. Kung, F.J. Sánchez, and M. Razeghi, Appl. Phys. Lett. 74, 1171 (1999).

    Article  Google Scholar 

  21. C.K. Wang, Y.Z. Chiou, S.J. Chang, W. Chih Lai, S.P. Chang, C.H. Yen, and C.C. Hung, IEEE Sens. J. 15, 4743 (2015).

    Article  Google Scholar 

  22. W. Jun, Z. Degang, L. Zongshun, F. Gan, Z. Jianjun, S. Xiaomin, Z. Baoshun, and Y. Hui, Sci. China Phys. Mech. 46, 198 (2003).

    Article  Google Scholar 

  23. D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz, and M. Razeghi, Appl. Phys. Lett. 74, 762 (1999).

    Article  Google Scholar 

  24. W. Yang, T. Nohova, S. Krishnankutty, R. Torreano, S. McPherson, and H. Marsh, Appl. Phys. Lett. 73, 1086 (1998).

    Article  Google Scholar 

  25. S.K. Zhang, W.B. Wang, I. Shtau, F. Yun, L. He, H. Morkoç, X. Zhou, M. Tamargo, and R.R. Alfano, Appl. Phys. Lett. 81, 4862 (2002).

    Article  Google Scholar 

  26. M.A. Khan, J.N. Kuznia, D.T. Olson, M. Blasingame, and A.R. Bhattarai, Appl. Phys. Lett. 63, 2455 (1993).

    Article  Google Scholar 

  27. A. Osinsky, S. Gangopadhyay, J.W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I.K. Shmagin, Y.C. Chang, J.F. Muth, and R.M. Kolbas, Appl. Phys. Lett. 72, 551 (1998).

    Article  Google Scholar 

  28. A.C. Schmitz, A.T. Ping, M. Asif Khan, Q. Chen, J.W. Yang, and I. Adesida, Semicond. Sci. Technol. 11, 1464 (1996).

    Article  Google Scholar 

  29. L. Wang, M.I. Nathan, T.H. Lim, M.A. Khan, and Q. Chen, Appl. Phys. Lett. 68, 1267 (1996).

    Article  Google Scholar 

  30. Y. Kribes, I. Harrison, B. Tuck, T.S. Cheng, and C.T. Foxon, Semicond. Sci. Technol. 12, 913 (1997).

    Article  Google Scholar 

  31. J.D. Guo, F.M. Pan, M.S. Feng, R.J. Guo, P.F. Chow, and C.Y. Chang, J. Appl. Phys. 80, 1623 (1996).

    Article  Google Scholar 

  32. E.V. Kalinina, N.J. Kurnestov, V.A. Dmitreiev, K.G. Irvine, and C.H. Carter, J. Electron. Mater. 25, 831 (1996).

    Article  Google Scholar 

  33. H. Morkoç, Handbook of Nitrides Semiconductors and Devices (Weinheim: Wiley, 2008).

    Book  Google Scholar 

  34. Silvaco Atlas User’s Manual, Device Simulator Software (2013).

  35. L. Ling, J.G. Ma, Y.R. Cao, J.C. Zhang, W. Zhang, L. Li, S.R. Xu, X.H. Ma, X.T. Ren, and Y. Hao, Microelectron. Reliab. 51, 2168 (2011).

    Article  Google Scholar 

  36. H. Teisseyre, P. Perlin, T. Suski, I. Grzegory, S. Porowski, and J. Jun, J. Appl. Phys. 76, 2429 (1994).

    Article  Google Scholar 

  37. K.H. Baik, Y. Irokawa, F. Ren, S.J. Pearton, and S.S. Park, Solid State Electron. 47, 1533 (2003).

    Article  Google Scholar 

  38. S.J. Pearton, C.R. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (Berlin: Springer, 2006).

    Google Scholar 

  39. M. Razeghi and M. Henini, Optoelectronic Devices: III-Nitrides (Amsterdam: Elsevier, 2004).

    Google Scholar 

  40. D. Caughey and R. Thomas, Proc. IEEE 52, 2192 (1967).

    Article  Google Scholar 

  41. T.T. Mnatsakanov, M.E. Levinshtein, L.I. Pomortseva, S.N. Yurkov, G.S. Simin, and M.A. Khan, Solid State Electron. 47, 111 (2003).

    Article  Google Scholar 

  42. C. Canali, G. Majni, R. Minder, and G. Ottaviani, IEEE Trans Electron Devices 22, 1045 (1975).

    Article  Google Scholar 

  43. Y. Tokuda, in CS MANTECH Conference (2014), pp. 19–24.

  44. A. Hierro, D. Kwon, S.A. Ringel, M. Hansen, J.S. Speck, U.K. Mishra, and S.P. DenBaars, Appl. Phys. Lett. 76, 3064 (2000).

    Article  Google Scholar 

  45. A. Armstrong, A.R. Arehart, B. Moran, S.P. DenBaars, U.K. Mishra, J.S. Speck, and S.A. Ringel, Appl. Phys. Lett. 84, 374 (2004).

    Article  Google Scholar 

  46. U. Honda, Y. Yamada, Y. Tokuda, and K. Shiojima, Jpn. J. Appl. Phys. 51, 04DF04 (2012).

    Article  Google Scholar 

  47. M. Matsubara and E. Bellotti, arXiv:1507.06969 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bouzid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzid, F., Dehimi, L. & Pezzimenti, F. Performance Analysis of a Pt/n-GaN Schottky Barrier UV Detector. J. Electron. Mater. 46, 6563–6570 (2017). https://doi.org/10.1007/s11664-017-5696-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5696-1

Keywords

Navigation