Skip to main content
Log in

The Effects of Vanadium Pentoxide to Oxalic Acid Ratio and Different Atmospheres on the Formation of VO2 Nanopowders Synthesized via Sol–Gel Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermochromic VO2 nanopowders were synthesized via the sol–gel method through mixing oxalic acid and vanadium pentoxide in ethanol. We investigated the effect of oxalic acid to vanadium pentoxide ratio on the formation of final product and found that excessive oxalic acid reduced the final product from VO2 to V2O3. Because decreasing the oxalic acid to vanadium pentoxide ratio is a time-consuming process, oxygen was introduced by using a low-porosity alumina tube. The heat treatment was performed inside an electrical tube furnace and in a variety of atmospheres, including pure nitrogen (99.999% purity) and nitrogen containing 5 vol.%, 10 vol.%, and 15 vol.% hydrogen. According to x-ray diffraction (XRD) results, the appropriate atmosphere for synthesizing VO2 nanopowder was the one which contained 10 vol.% hydrogen. In order to decrease the transition temperature in VO2 from 63.5°C to room temperature, W6+ doping was done by adding different amounts of tungstic acid sol to vanadium sol precursor. Differential scanning calorimetry (DSC) results showed that W6+ reduced the transition temperature of VO2 approximately 23°C/wt.%. Lattice straining estimated from XRD results confirmed that VO2 was doped. XRD results at 25°C and 100°C along with DSC results indicated that VO2 was transformed from a low-temperature monoclinic phase to a high-temperature rutile one along this temperature interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zhao, L. Miao, S. Tanemura, J. Zhou, L. Chen, X. Xiao, and G. Xu, Thin Solid Films 543, 157 (2013).

    Article  Google Scholar 

  2. C. Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard, and Y. Sampeur, Surf. Coat. Technol. 98, 1477 (1998).

    Article  Google Scholar 

  3. C. Bianchi, L.M. Ferreira, J. Loureiro, A. Rodrigues, P. Duarte, A.C. Baptista, and I.M. Ferreira, J. Electron. Mater. 45, 1987 (2016).

    Article  Google Scholar 

  4. A. Ozcelik, O. Cabarcos, D.L. Allara, and M.W. Horn, J. Electron. Mater. 42, 901 (2013).

    Article  Google Scholar 

  5. J.H. Wang, S.E. Mohney, S.H. Wang, U. Chowdhury, and R.D. Dupuis, J. Electron. Mater. 33, 418 (2004).

    Article  Google Scholar 

  6. L.Z. Shuyu Wang, S. Yu, M. Lu, and M. Liu, J. Electron. Mater. 46, 2153 (2017).

    Article  Google Scholar 

  7. J. Ni, W. Jiang, K. Yu, Y. Gao, and Z. Zhu, Electrochim. Acta 56, 2122 (2011).

    Article  Google Scholar 

  8. F.Y. Kong, M. Li, D.B. Li, Y. Xu, Y.X. Zhang, and G.H. Li, J. Cryst. Growth 346, 22 (2012).

    Article  Google Scholar 

  9. F.J. Morin, Phys. Rev. Lett. 3, 34 (1959).

    Article  Google Scholar 

  10. U. Schwingenschlögl and V. Eyert, Ann. Phys. 13, 475 (2004).

    Article  Google Scholar 

  11. S. Li, G.A. Niklasson, and C.G. Granqvist, J. Appl. Phys. 108, 63525 (2010).

    Article  Google Scholar 

  12. N.R. Mlyuka, G.A. Niklasson, and C.G. Granqvist, Appl. Phys. Lett. 95, 2 (2009).

    Article  Google Scholar 

  13. Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, Nano Energy 1, 221 (2012).

    Article  Google Scholar 

  14. W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B.K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, Thin Solid Films 402, 226 (2002).

    Article  Google Scholar 

  15. H. Liu, O. Vasquez, V.R. Santiago, L. Diaz, A.J. Rua, and F.E. Fernandez, J. Electron. Mater. 34, 491 (2005).

    Article  Google Scholar 

  16. C.L. Xu, L. Ma, X. Liu, W.Y. Qiu, and Z.X. Su, Mater. Res. Bull. 39, 881 (2004).

    Article  Google Scholar 

  17. M. Ghedira, H. Vincent, M. Marezio, and J.C. Launay, J. Solid State Chem. 22, 423 (1977).

    Article  Google Scholar 

  18. F. Béteille and J. Livage, J. Sol Gel Sci. Technol. 921, 915 (1998).

    Article  Google Scholar 

  19. G.R. Mutta, S.R. Popuri, M. Vasundhara, M. Maciejczyk, A.V. Racu, R. Banica, N. Robertson, J.I.B. Wilson, and N.S. Bennett, Mater. Res. Bull. 83, 135 (2016).

    Article  Google Scholar 

  20. I. Mjejri, N. Etteyeb, and F. Sediri, Mater. Res. Bull. 60, 97 (2014).

    Article  Google Scholar 

  21. J.-C. Valmalette and J.-R. Gavarri, Mater. Sci. Eng., B 54, 168 (1998).

    Article  Google Scholar 

  22. L. Chen, C. Huang, G. Xu, L. Miao, J. Shi, J.H. Zhou, and X. Xiao, J. Nanomater. 8, 491051 (2012).

    Google Scholar 

  23. Z. Peng, W. Jiang, and H. Liu, J. Phys. Chem. C 111, 1119 (2007).

    Article  Google Scholar 

  24. M.E.A. Warwick and R. Binions, J. Mater. Chem. A 2, 3275 (2014).

    Article  Google Scholar 

  25. Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, and Z.L. Wang, Energy Environ. Sci. 4, 4290 (2011).

    Article  Google Scholar 

  26. D.N. Sathyanarayana and C.C. Patel, J. Inorg. Nucl. Chem. 27, 297 (1965).

    Article  Google Scholar 

  27. B. Pecquenard, S. Castro-Garcia, J. Livage, P.Y. Zavalij, M.S. Whittingham, and R. Thouvenot, Chem. Mater. 10, 1882 (1998).

    Article  Google Scholar 

  28. C.Y. Kim, M. Lee, S.H. Huh, and E.K. Kim, J. Sol Gel Sci. Technol. 53, 176 (2010).

    Article  Google Scholar 

  29. S. Ji, Y. Zhao, F. Zhang, and P. Jin, J. Cryst. Growth 312, 282 (2010).

    Article  Google Scholar 

  30. I.L. Botto, M.B. Vassallo, E.J. Baran, and G. Minelli, Mater. Chem. Phys. 50, 267 (1997).

    Article  Google Scholar 

  31. S.R. Popuri, M. Miclau, A. Artemenko, C. Labrugere, A. Villesuzanne, and M. Pollet, Inorg. Chem. 52, 4780 (2013).

    Article  Google Scholar 

  32. N.H.D.A. Camargo, O.J. Bellini, E. Gemelli, and M. Tomiyama, Revista Matéria 12, 574 (2007).

    Article  Google Scholar 

  33. R.M. Kettler, D.A. Palmer, and D.J. Wesolowski, J. Solut. Chem. 20, 905 (1991).

    Article  Google Scholar 

  34. L. Zhao, L. Miao, C. Liu, C. Li, T. Asaka, Y. Kang, Y. Iwamoto, S. Tanemura, H. Gu, and H. Su, Sci. Rep. 4, 7000 (2014).

    Article  Google Scholar 

  35. J. Zhang, H. He, Y. Xie, and B. Pan, J. Chem. Phys. 138, 114705 (2013).

    Article  Google Scholar 

  36. W. Li, S. Ji, Y. Li, A. Huang, H. Luo, and P. Jin, RSC Adv. 4, 13026 (2014).

    Article  Google Scholar 

  37. Z. Peng, Y. Wang, Y. Du, D. Lu, and D. Sun, J. Alloys Compd. 480, 537 (2009).

    Article  Google Scholar 

  38. T. Nanba, S. Takano, I. Yasui, and T. Kudo, J. Solid State Chem. 90, 47 (1991).

    Article  Google Scholar 

  39. J.-H. Cho, Y.-J. Byun, J.-H. Kim, Y.-J. Lee, Y.-H. Jeong, M.-P. Chun, J.-H. Paik, and T.H. Sung, Ceram. Int. 38, S589 (2012).

    Article  Google Scholar 

  40. A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, Solid State Sci. 13, 251 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Eftekhari Yekta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vostakola, M.F., Yekta, B.E. & Mirkazemi, S.M. The Effects of Vanadium Pentoxide to Oxalic Acid Ratio and Different Atmospheres on the Formation of VO2 Nanopowders Synthesized via Sol–Gel Method. J. Electron. Mater. 46, 6689–6697 (2017). https://doi.org/10.1007/s11664-017-5712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5712-5

Keywords

Navigation