Skip to main content

Advertisement

Log in

On Using the Volatile Mem-Capacitive Effect of TiO2 Resistive Random Access Memory to Mimic the Synaptic Forgetting Process

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we report on mimicking the synaptic forgetting process using the volatile mem-capacitive effect of a resistive random access memory (RRAM). TiO2 dielectric, which is known to show volatile memory operations due to migration of inherent oxygen vacancies, was used to achieve the volatile mem-capacitive effect. By placing the volatile RRAM candidate along with SiO2 at the gate of a MOS capacitor, a volatile capacitance change resembling the forgetting nature of a human brain is demonstrated. Furthermore, the memory operation in the MOS capacitor does not require a current flow through the gate dielectric indicating the feasibility of obtaining low power memory operations. Thus, the mem-capacitive effect of volatile RRAM candidates can be attractive to the future neuromorphic systems for implementing the forgetting process of a human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Yu and P.Y. Chen, IEEE Solid-State Circuits Mag 8, 43 (2016).

    Article  Google Scholar 

  2. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, and C.S. Hwang, Rep. Prog. Phys. 75, 076502 (2012).

    Article  Google Scholar 

  3. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    Article  Google Scholar 

  4. N.K. Upadhyay, S. Joshi, and J.J. Yang, Sci. China Inf. Sci. 59, 061404 (2016).

    Article  Google Scholar 

  5. S. Park, J. Noh, M. Choo, A.M. Sheri, M. Chang, Y.-B. Kim, C.J. Kim, M. Jeon, B.-G. Lee, B.H. Lee, and H. Hwang, Nanotechnology 24, 384009 (2013).

    Article  Google Scholar 

  6. B. Sarkar, B. Lee, and V. Misra, Semicond. Sci. Technol. 30, 105014 (2015).

    Article  Google Scholar 

  7. T. Chang, S.-H. Jo, and W. Lu, ACS Nano 5, 7669 (2011).

    Article  Google Scholar 

  8. T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, Appl. Phys. A 102, 857 (2011).

    Article  Google Scholar 

  9. R. Yang, K. Terabe, G. Liu, T. Tsuruoka, T. Hasegawa, J.K. Gimzewski, and M. Aono, ACS Nano 6, 9515 (2012).

    Article  Google Scholar 

  10. P. Zhang, C. Li, T. Huang, L. Chen, and Y. Chen, Neurocomputing 222, 47 (2017).

    Article  Google Scholar 

  11. M.R. Azghadi, B. Linares-Barranco, D. Abbott, and P.H.W. Leong, IEEE Trans. Biomed. Circuits Syst. 11, 434 (2017).

    Article  Google Scholar 

  12. R. Berdan, C. Lim, A. Khiat, C. Papavassiliou, and T. Prodromakis, IEEE Electron Device Lett. 35, 135 (2014).

    Article  Google Scholar 

  13. Y. Li, P. Yuan, L. Fu, R. Li, X. Gao, and C. Tao, Nanotechnology 26, 391001 (2015).

    Article  Google Scholar 

  14. T. Liu, M. Verma, Y. Kang, and M. Orlowski, Appl. Phys. Lett. 101, 073510 (2012).

    Article  Google Scholar 

  15. I. Salaoru, Q. Li, A. Khiat, and T. Prodromakis, Nanoscale Res. Lett. 9, 552 (2014).

    Article  Google Scholar 

  16. M. Oku, K. Wagatsuma, and S. Kohiki, Phys. Chem. Chem. Phys. 1, 5327 (1999).

    Article  Google Scholar 

  17. M. Ishfaq, M.R. Khan, M.F. Bhopal, F. Nasim, A. Ali, A.S. Bhatti, I. Ahmed, S. Bhardwaj, and C. Cepek, J. Appl. Phys. 115, 174506 (2014).

    Article  Google Scholar 

  18. S.-J. Park, J.-P. Lee, J.S. Jang, H. Rhu, H. Yu, B.Y. You, C.S. Kim, K.J. Kim, Y.J. Cho, S. Baik, and W. Lee, Nanotechnology 24, 295202 (2013).

    Article  Google Scholar 

  19. J.T. Wixted and E.B. Ebbesen, Psychol. Sci. 2, 409 (1991).

    Article  Google Scholar 

  20. Y. Taur and T.H. Ning, Fundamentals of modern VLSI devices (Cambridge: Cambridge University Press, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biplab Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, B., Mills, S., Lee, B. et al. On Using the Volatile Mem-Capacitive Effect of TiO2 Resistive Random Access Memory to Mimic the Synaptic Forgetting Process. J. Electron. Mater. 47, 994–997 (2018). https://doi.org/10.1007/s11664-017-5914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5914-x

Keywords

Navigation