Skip to main content
Log in

Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports on the comparison of residual stresses in AlN thin films sputter-deposited in identical conditions on Si (100) (110) and (111) substrates. The deposited films are of polycrystalline wurtzite structure with preferred orientation along the (002) direction. AlN film on the Si (111) substrate showed a vertical columnar structure, whereas films on Si (100) and (110) showed tilted columnar structures. Residual stress in the AlN films is estimated by x-ray diffraction (XRD), infra-red absorption method and wafer curvature technique. Films residual stress are found compressive and values are in the range of − 650 (± 50) MPa, − 730 (± 50) MPa and − 300 (± 50) MPa for the AlN films grown on Si (100), (110) and (111) substrates, respectively, with different techniques. The difference in residual stresses can be attributed to the microstructure of the films and mismatch between in plane atomic arrangements of the film and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Randreiamora, J.C. Bruyere, and A. Deneuville, Mater. Sci. Eng. B 50, 272 (1997).

    Article  Google Scholar 

  2. T.P. Drusedau and J. Blasing, Thin Solid Films 377–378, 27 (2000).

    Article  Google Scholar 

  3. X.H. Ji, S.P. Lau, G.Q. Yu, W.H. Zhong, and B.K. Tay, J. Phys. D Appl. Phys. 37, 1472 (2004).

    Article  Google Scholar 

  4. S. Stritc and H. Morkoe, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  Google Scholar 

  5. E.I. Bienk, H. Jensen, G.N. Pedersen, and S. Sorensen, Thin Solid Films 230, 121 (1993).

    Article  Google Scholar 

  6. N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, and G. Piazza, Appl. Phys. Lett. 95, 053106 (2009).

    Article  Google Scholar 

  7. K. Tonisch, V. Cimalla, C. Foerster, H. Romanus, O. Ambacher, and D. Dontsov, Sens. Actuators A Phys. 132, 658 (2006).

    Article  Google Scholar 

  8. A. Ababneh, M. Alsumady, H. Seidel, T. Manzaneque, J. Hernando-García, J.L. Sanchez-Rojas, A. Bittner, and U. Schmid, Appl. Surf. Sci. 259, 59 (2012).

    Article  Google Scholar 

  9. P. Kung, A. Saxler, X. Zhang, D. Walker, T. Wang, I. Ferguson, and M. Razeghi, Appl. Phys. Lett. 66, 2958 (1995).

    Article  Google Scholar 

  10. S. Tanaka, R.S. Kern, J. Bentley, and R.F. Davis, Jpn. J. App. Phys. 35, 1641 (1996).

    Article  Google Scholar 

  11. T. Huang and J.S. Harris Jr., Appl. Phys. Lett. 72, 1158 (1998).

    Article  Google Scholar 

  12. J.X. Zhang, H. Cheng, Y.Z. Chen, A. Uddin, S. Yuan, S.J. Geng, and S. Zhang, Surf. Coat. Tech. 198, 68 (2005).

    Article  Google Scholar 

  13. S. Khan, M. Shahid, A. Mahmood, A. Shah, I. Ahmed, M. Mehmood, U. Aziz, Q. Raza, and M. Alam, Prog. Nat. Sci. Mater. Int. 25, 282 (2015).

    Article  Google Scholar 

  14. M.A. Moreira, T. Törndahl, I. Katardjiev, and T. Kubart, J. Vac. Sci. Technol. A 33, 021518 (2015).

    Article  Google Scholar 

  15. A. Pandey, S. Dutta, R. Prakash, S. Dalal, R. Raman, A.K. Kapoor, and D. Kaur, Mater. Sci. Semi. Process. 52, 16 (2016).

    Article  Google Scholar 

  16. S. Dutta, M. Imran, P. Kumar, R. Pal, P. Datta, and R. Chatterjee, Microsyst. Technol. 17, 1621 (2011).

    Article  Google Scholar 

  17. S. Dutta, M. Kumar, S. Kumar, M. Imran, I. Yadav, A. Kumar, P. Kumar, and R. Pal, J. Mater. Sci. Mater. Electron. 25, 1984 (2014).

    Article  Google Scholar 

  18. T. Aubert, M.B. Assouar, O. Legrani, O. Elmazria, C. Tiusan, and S. Robert, J. Vac. Sci. Technol. A 29, 021010 (2011).

    Article  Google Scholar 

  19. E. Valcheva, J. Birch, P.O.Å. Persson, S. Tungasmita, and L. Hultman, J Appl. Phys. 100, 123514 (2006).

    Article  Google Scholar 

  20. F. Engelmark, G. Fucntes, I.V. Katadgiev, A. Harsla, U. Smith, and S. Berg, J. Vac. Sci. Technol. A 18, 1609 (2000).

    Article  Google Scholar 

  21. G.F. Iriarte, J. Vac. Sci. Technol. A 28, 193 (2010).

    Article  Google Scholar 

  22. H.Y. Liu, G.S. Tang, F. Zengn, and F. Pan, J. Crys. Growth 363, 80 (2013).

    Article  Google Scholar 

  23. G. Este and W.D. Westwood, J. Vac. Sci. Technol. A 5, 1892 (1987).

    Article  Google Scholar 

  24. V. Felmetsger, P.N. Laptev, and S.M. Tanner, J. Vac. Sci. Technol. A 27, 417 (2009).

    Article  Google Scholar 

  25. R.E. Sah, L. Kirste, M. Baeumler, P. Hiesinger, V. Cimalla, V. Lebedev, H. Baumann, and H.-E. Zschau, J. Vac. Sci. Technol. A 28, 394 (2010).

    Article  Google Scholar 

  26. V. Lughi and D.R. Clarke, Appl. Phys. Lett. 89, 241911 (2006).

    Article  Google Scholar 

  27. P. Pobedinskas, B. Ruttens, J. D’Haen, and K. Haenen, Appl. Phys. Lett. 100, 191906 (2012).

    Article  Google Scholar 

  28. Y.H. Kim, J.H. Lee, Y.K. Noh, J.E. Oh, and S.J. Ahn, Thin Solid Films 576, 61 (2015).

    Article  Google Scholar 

  29. W.A. Kern and D.A. Poutinen, RCA Rev. 31, 187 (1970).

    Google Scholar 

  30. A.V. Singh, S. Chandra, A.K. Srivastava, B.R. Chakroborty, G. Sehgal, M.K. Dalai, and G. Bose, Appl. Surf. Sci. 257, 9568 (2011).

    Article  Google Scholar 

  31. Y. Wang, W. Tang, and L. Zhang, J. Mater. Sci. Technol. 31, 175 (2015).

    Article  Google Scholar 

  32. C.H. Ma, J.H. Huang, and H. Chen, Thin Solid Films 418, 73 (2002).

    Article  Google Scholar 

  33. R. Ruh, A. Zangvil, and J. Barlowe, Am. Ceram. Soc. Bull. 64, 1368 (1985).

    Google Scholar 

  34. K. Kim, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 53, 16310 (1996).

    Article  Google Scholar 

  35. A.F. Wright, J. Appl. Phys. 82, 2833 (1997).

    Article  Google Scholar 

  36. T. Prokofyeva, M. Seon, J. Vanbuskirk, and M. Holtz, Phys. Rev. B 63, 125313 (2001).

    Article  Google Scholar 

  37. J.H. Edgar, C.A. Carosella, C.R. Eddy Jr., and D.T. Smith, J. Mater. Sci. Mater. Electron. 7, 247 (1996).

    Article  Google Scholar 

  38. C. Mirpuri, S. Xu, J.D. Long, and K. Ostrikov, J. Appl. Phys. 10, 024312 (2007).

    Article  Google Scholar 

  39. M.D. Ramos, T. Mirea, M. Clement, J. Olivares, J. Sangrador, and E. Iborra, Thin Solid Film 590, 219 (2015).

    Article  Google Scholar 

  40. G.G. Stoney, Proc. R. Soc. Lond. A 82, 172 (1909).

    Article  Google Scholar 

  41. S. Dutta, A. Pandey, M. Singh, and R. Pal, Mater. Lett. 164, 316 (2016).

    Article  Google Scholar 

  42. M.J. Madau, Fundamental of Micro-fabrication: The Science of Miniaturization (Boca Raton: CRC Press, 2002).

    Google Scholar 

  43. Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).

    Article  Google Scholar 

  44. W. Qian, M. Skowronski, G.R. Rohrer, D.K. Gaskill, C.D. Brandt and R.J. Nemanich, in Materials Research Society Symposium Proceedings, Pittsburgh, pp. 423–475 (1996).

  45. L. Zhang, H. Yang, X. Pang, K. Gao, and A.A. Volinsky, Surf. Coat. Techol. 224, 120 (2013).

    Article  Google Scholar 

  46. D. Magnfält, A. Fillon, R.D. Boyd, U. Helmersson, K. Sarakinos, and G. Abadias, J. Appl. Phys. 119, 055305 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Dutta, S., Prakash, R. et al. Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates. J. Electron. Mater. 47, 1405–1413 (2018). https://doi.org/10.1007/s11664-017-5924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5924-8

Keywords

Navigation