Skip to main content
Log in

XPS Spectra Analysis of Ti2+, Ti3+ Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

TiO2-SiO2 mixed oxides have been prepared by the sol–gel technique from tetrabutyl orthotitanate and tetraethyl orthosilicate. The prepared materials were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, nitrogen physisorption, Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS). The results indicate that the TiO2-SiO2 mixed oxides have a large surface area and a nanoscale size. FT-IR spectra show that Ti atoms are bonded to silica by oxygen bridging atoms in Ti-O-Si bonds. The titanium valence states in TiO2-SiO2 mixed oxides were investigated by XPS, and their spectra report the presence of Ti2+ and Ti3+ cations for high silica concentration, suggesting the formation of oxygen vacancies. The photocatalytic activity of the prepared materials has been evaluated for the photodegradation of methylene blue (MB). The mixed oxides were activated by means of a UV light source, and the concentration of MB was monitored by UV–Vis spectroscopy. The synthesized TiO2-SiO2 shows significantly higher MB removal efficiency in comparison with that of the commercial TiO2 Degussa, P25.

Graphical Abstract

In this paper, we observed three valence states of titanium: Ti4+, Ti3+ and Ti2+ in TiO2-SiO2 40%. This issue has not yet been reported. XPS analysis show that the content of Ti2+ and Ti3+ amounts to 25.26 at.% and 13.08 at.%, respectively, while the concentration of Ti4+ is 61.72 at.%, much lower than in the TiO2-SiO2 9% sample. This behavior is explained observing that in TiO2-SiO2 40%, Ti4+ is reduced to Ti3+ and Ti2+ to a larger extent with respect to TiO2-SiO2 9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mahyar, M.A. Behnajady, and N. Modirshahla, Indian J. Chem. 49A, 1593 (2010).

    Google Scholar 

  2. X. Zhang, F. Wu, Z. Wang, Y. Guo, and N. Deng, J. Mol. Catal. A Chem. 301, 134 (2009).

    Article  Google Scholar 

  3. J.W. Shi, S.H. Chen, S.M. Wang, P. Wu, and G.H. Xu, J. Mol. Catal. A Chem. 303, 141 (2009).

    Article  Google Scholar 

  4. M. Zhou, J. Yu, and H. Yu, J. Mol. Catal. A Chem. 313, 107 (2009).

    Article  Google Scholar 

  5. G. Magesh, B. Viswanathan, R.P. Viswanath, and T.K. Varadarajan, Indian J. Chem. 48A, 480 (2009).

    Google Scholar 

  6. K.J.A. Raj, Y.R. Smith, V. Subramanian, and B. Viswanathan, Indian J. Chem. 49A, 867 (2010).

    Google Scholar 

  7. X. Fu, L.A. Clark, Q. Yang, and M.A. Anderson, Environ. Sci. Technol. 30, 647 (1996).

    Article  Google Scholar 

  8. H. Chun, W. Yizhong, and T. Hongxiao, Appl. Catal. B Environ. 35, 95 (2001).

    Article  Google Scholar 

  9. C. Xie, Z. Xu, Q. Yang, B. Xue, Y. Du, and J. Zhang, Mater. Sci. Eng. B 112, 34 (2004).

    Article  Google Scholar 

  10. Z. Ding, G.Q. Lu, and P.F. Greenfield, J. Phys. Chem. B 104, 4815 (2000).

    Article  Google Scholar 

  11. Y. Huang, R. Jiang, S.J. Bao, Y. Cao, and D. Jia, Nanoscale Res. Lett. 4, 353 (2009).

    Article  Google Scholar 

  12. G. Colon, M.C. Hidalgo, and J.A. Navio, Catal. Today 76, 91 (2002).

    Article  Google Scholar 

  13. C. Jin, R.Y. Zheng, Y. Guo, J.L. Xie, Y.X. Zhu, and Y.C. Xie, J. Mol. Catal. A Chem. 313, 44 (2009).

    Article  Google Scholar 

  14. C. Chen, M. Long, H. Zeng, W. Cai, B. Zhou, J. Zhang, Y. Wu, D. Ding, and D. Wu, J. Mol. Catal. A Chem. 314, 35 (2009).

    Article  Google Scholar 

  15. A.A. Aal, S.A. Mahmoud, and A.K. Aboul-Gheit, Nanoscale Res. Lett. 4, 627 (2009).

    Article  Google Scholar 

  16. N.N. Binitha, Z. Yaakob, and R. Resmi, Cent. Eur. J. Chem. 8, 182 (2010).

    Google Scholar 

  17. A.A. Ismail and I.A. Ibrahim, Appl. Catal. A Gen. 346, 200 (2008).

    Article  Google Scholar 

  18. C. Anderson and A.J. Bard, J. Phys. Chem. 99, 9882 (1995).

    Article  Google Scholar 

  19. U. Diebold, Surf. Sci. Rep. 48, 53 (2003).

    Article  Google Scholar 

  20. X. Gao, S.R. Bare, J.G.L. Fierro, M.A. Banares, and I.E. Wachs, J. Phys. Chem. B 102, 5653 (1998).

    Article  Google Scholar 

  21. M.C. Capel-Sanchez, G. Blanco-Brieva, J.M. Campos-Martin, M.P. de Frutos, W. Wen, J.A. Rodriguez, and J.L.G. Fierro, Langmuir 25, 7148 (2009).

    Article  Google Scholar 

  22. A. Mills and J. Wang, J. Photochem. Photobiol. A 127, 123 (1999).

    Article  Google Scholar 

  23. X. Chao, X. Zi-li, Y. Qiu-jing, L. Na, W. De-bao, and D. Yao-guo, Chem. Res. Chin. Univ. 21, 48 (2005).

    Google Scholar 

  24. H.T.T. Tran, H. Kosslick, M.F. Ibad, C. Fischer, U. Bentrup, T.H. Vuong, L.Q. Nguyen, and A. Schulz, Appl. Catal. B 200, 647 (2017).

    Article  Google Scholar 

  25. A. Leaustic, F. Babonneau, and J. Livage, Chem. Mater. 1, 240 (1989).

    Article  Google Scholar 

  26. J.R. Sohn and H.J. Jang, J. Catal. 132, 563 (1991).

    Article  Google Scholar 

  27. G. Beamson and D. Briggs (eds.), The XPS of Polymers Database, Surface Spectra (Manchester, 2000), p. 277

  28. A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, and C.J. Powell, NIST X-ray photoelectron spectroscopy database, NIST standard reference database 20, version 4.1. https://srdata.nist.gov/xps/Default.aspx. Accessed 14 Oct 2017

  29. F. Zhang, S. Jin, Y. Mao, Z. Zheng, Y. Chen, and X. Liu, Thin Solid Films 310, 29 (1997).

    Article  Google Scholar 

  30. V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, and Z. Zhang, J. Electron Spectrosc. Relat. Phenom. 152, 18 (2006).

    Article  Google Scholar 

  31. Th. Gross, M. Ramm, H. Sonntag, W. Unger, H.M. Weijers, and E.H. Adem, Surf. Interf. Anal. 18, 59 (1992).

    Article  Google Scholar 

  32. F. Barreca, N. Acacia, E. Barletta, D. Spadaro, G. Currò, and F. Neri, Appl. Surf. Sci. 256, 6408 (2010).

    Article  Google Scholar 

  33. P.M. Kumar, S. Badrinarayanan, and M. Sastry, Thin Solid Films 358, 122 (2000).

    Article  Google Scholar 

  34. F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, and G. Hollinger, Phys. Rev. B 38, 6084 (1988).

    Article  Google Scholar 

  35. W. LuYan, S. YanPing, and X. BingShe, Chin. Sci. Bull. 53, 2964 (2008).

    Google Scholar 

  36. D. Zhang, J. Wu, B. Zhou, Y. Hong, S. Li, and W. Wen, Nanoscale 5, 6167 (2013).

    Article  Google Scholar 

  37. M. Khatamian and Z. Alaji, Desalination 286, 248 (2012).

    Article  Google Scholar 

  38. J.R. Raji and K. Palanivelu, Ind. Eng. Chem. Res. 50, 3130 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Duc Chinh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinh, V.D., Broggi, A., Di Palma, L. et al. XPS Spectra Analysis of Ti2+, Ti3+ Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles. J. Electron. Mater. 47, 2215–2224 (2018). https://doi.org/10.1007/s11664-017-6036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6036-1

Keywords

Navigation