Skip to main content
Log in

Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Properties of HgCdTe films grown by molecular beam epitaxy on GaAs and Si substrates have been studied by performing variable-temperature photoluminescence (PL) measurements. A substantial difference in defect structure between films grown on GaAs (013) and Si (013) substrates was revealed. HgCdTe/GaAs films were mostly free of defect-related energy levels within the bandgap, which was confirmed by PL and carrier lifetime measurements. By contrast, the properties of HgCdTe/Si films are affected by uncontrolled point defects. These could not be always associated with typical “intrinsic” HgCdTe defects, such as mercury vacancies, so consideration of other defects, possibly inherent in HgCdTe/Si structures, was required. The post-growth annealing was found to have a positive effect on the defect structure by reducing the full-widths at half-maximum of excitonic PL lines for both types of films and lowering the concentration of defects specific to HgCdTe/Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev. 2, 041303 (2015).

    Article  Google Scholar 

  2. M. Kinch, J. Electron. Mater. 44, 2969 (2015).

    Article  Google Scholar 

  3. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, Appl. Phys. Rev. 1, 041102 (2014).

    Article  Google Scholar 

  4. J.D. Benson, L.O. Bubulac, M. Jaime-Vasquez, J.M. Arias, P.J. Smith, R.N. Jacobs, J.K. Markunas, L.A. Almeida, A. Stoltz, P.S. Wijewarnasuriya, J. Peterson, M. Reddy, K. Jones, S.M. Johnson, and D.D. Lofgreen, J. Electron. Mater. 46, 5018 (2017).

    Article  Google Scholar 

  5. M. Vaghayenegar, R.N. Jacobs, J.D. Benson, A.J. Stoltz, L.A. Almeida, and D.J. Smith, J. Electron. Mater. 46, 5007 (2017).

    Article  Google Scholar 

  6. Yu. Sidorov, I. Loshkarev, I. Sabinina, E. Trukhanov, V. Varavin, M. Yakushev, and A. Kolesnikov, Phys. Stat. Sol. C 13, 425 (2016).

    Google Scholar 

  7. I.I. Izhnin, K.D. Mynbaev, A.V. Voitsekhovsky, A.G. Korotaev, O.I. Fitsych, M. Pociask-Bialy, and S.A. Dvoretsky, Opto-Electron. Rev. 23, 200 (2015).

    Article  Google Scholar 

  8. K.D. Mynbaev, N.L. Bazhenov, V.I. Ivanov-Omski, N.N. Mikhailov, M.V. Yakushev, A.V. Sorochkin, S.A. Dvoretsky, V.S. Varavin, and Yu.G. Sidorov, Semiconductors 45, 872 (2011).

    Article  Google Scholar 

  9. M.V. Yakushev, K.D. Mynbaev, N.L. Bazhenov, V.S. Varavin, N.N. Mikhailov, D.V. Marin, S.A. Dvoretsky, and Yu.G. Sidorov, Phys. Status Solidi C 13, 469 (2016).

    Article  Google Scholar 

  10. S. Simingalam, B.L. VanMil, Y.P. Chen, E.A. DeCuir, G.P. Meissner, P. Wijewarnasuriya, N.K. Dhar, and M.V. Rao, Sol. State Electron. 101, 90 (2014).

    Article  Google Scholar 

  11. O. Gravrand, J. Rothman, C. Cervera, N. Baier, C. Lobre, J.P. Zanatta, O. Boulade, V. Moreau, and B. Fieque, J. Electron. Mater. 45, 4532 (2016).

    Article  Google Scholar 

  12. V.M. Bazovkin, S.A. Dvoretsky, A.A. Guzev, A.P. Kovchavtsev, D.V. Marin, V.G. Polovinkin, I.V. Sabinina, G.Y. Sidorov, A.V. Tsarenko, V.V. Vasil’ev, V.S. Varavin, and M.V. Yakushev, Infrared Phys. Technol. 76, 72 (2016).

    Article  Google Scholar 

  13. H. Wen and E. Belotti, J. Appl. Phys. 119, 205702 (2016).

    Article  Google Scholar 

  14. V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, Y.G. Sidorov, A.O. Suslyakov, M.V. Yakushev, and A.L. Aseev, Opto-Electron. Rev. 11, 99 (2003).

    Google Scholar 

  15. D. Ouadjaout, Y. Marfaing, A. Lusson, and A. Heurtel, J. Cryst. Growth 101, 709 (1990).

    Article  Google Scholar 

  16. A.V. Shilyaev, K.D. Mynbaev, N.L. Bazhenov, and A.A. Greshnov, Tech. Phys. 87, 419 (2017).

    Google Scholar 

  17. M.M. Kraus, C.R. Becker, S. Scholl, Y.S. Wu, S. Yann, and G. Landwehr, Semicond. Sci. Technol. 8, S62 (1993).

    Article  Google Scholar 

  18. S.A. Kazazis, E. Papadomanolaki, M. Androulidaki, M. Kayambaki, and E. Iliopoulos, J. Appl. Phys. 123, 125101 (2018).

    Article  Google Scholar 

  19. I.C. Robin, M. Taupin, R. Derone, A. Sollignac, P. Ballet, and A. Lusson, Appl. Phys. Lett. 95, 202104 (2009).

    Article  Google Scholar 

  20. H. Wang, J. Hong, F. Yue, C. Jing, and J. Chu, Infrared Phys. Technol. 82, 1 (2017).

    Article  Google Scholar 

  21. S.V. Morozov, V.V. Rumyantsev, A.V. Antonov, K.V. Maremyanin, K.E. Kudryavtsev, L.V. Krasilnikova, N.N. Mikhailov, S.A. Dvoretskii, and V.I. Gavrilenko, Appl. Phys. Lett. 104, 072102 (2014).

    Article  Google Scholar 

  22. B. Delacourt, P. Ballet, F. Boulard, A. Ferron, L. Bonnefond, T. Pellerin, A. Kerlain, V. Destefanis, and J. Rothman, J. Electron. Mater. 46, 6817 (2017).

    Article  Google Scholar 

  23. M.A. Kinch, F. Aqariden, D. Chandra, P.K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005).

    Article  Google Scholar 

  24. S.V. Zablotsky, N.L. Bazhenov, K.D. Mynbaev, M.V. Yakushev, D.V. Marin, V.S. Varavin, and S.A. Dvoretsky, J. Phys Conf. Ser. 643, 012004 (2015).

    Article  Google Scholar 

  25. M.V. Yakushev, A.K. Gutakovsky, I.V. Sabinina, and Yu.G. Sidorov, Semiconductors 45, 926 (2011).

    Article  Google Scholar 

  26. L. Bubulac, J. Benson, R. Jacobs, A. Stoltz, M. Jaime-Vasquez, L.A. Almeida, A. Wang, L. Wang, R. Hellmer, T. Golding, J.H. Dinan, M. Carmody, P.S. Wijewarnasuriya, M.F. Lee, M.F. Vilela, J. Peterson, S.M. Johnson, D.F. Lofgreen, and D. Rhiger, J. Electron. Mater. 40, 280 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Mynbaev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mynbaev, K.D., Bazhenov, N.L., Dvoretsky, S.A. et al. Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies. J. Electron. Mater. 47, 4731–4736 (2018). https://doi.org/10.1007/s11664-018-6364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6364-9

Keywords

Navigation