Skip to main content
Log in

Linear and Nonlinear Optics of CBD Grown Nanocrystalline F Doped CdS Thin Films for Optoelectronic Applications: An Effect of Thickness

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fluorine (F) doped (i.e. 1 wt.%) cadmium sulfide (CdS) thin films with different thicknesses were fabricated on fluorine doped tin oxide coated glass substrates by chemical bath deposition methods. For doping of F, 1 wt.% ammonium fluoride was added into the solution. A significant influence of thicknesses on physical properties of F doped CdS thin films was observed. The thin films were investigated by various characterization techniques such as x-ray diffraction (XRD), UV–Vis–NIR, FT-Raman spectroscopy and scanning electron microscope. XRD analysis showed that the films are preferentially grown along (111) plane. The crystallites’ size changed with increases the film’s thickness. Films showed high transmittance in visible region. Raman spectra showed shift in first and second longitudinal phonon vibration (1LO and 2LO) with the change in thickness of the films. This shows that changing thickness leads to changes in the physical properties of films. The values of the band gaps were estimated as 2.60 eV, 2.75 eV, 2.80 eV for films of thickness 100 nm, 150 nm and 200 nm, respectively. Hence, the band gap of films increases with an increase in thickness. Refractive index, linear optical susceptibility, nonlinear optical susceptibility and nonlinear refractive index were also estimated. The higher values of nonlinear optical parameters shows good scope in nonlinear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hernández-Borja, Y. Vorobiev, and R. Ramírez-Bon, Sol. Energy Mater. Sol. Cells 95, 1882 (2011).

    Article  Google Scholar 

  2. W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H. Stiegler, M. Quevedo-Lopez, R. Pieper, and B. Gnade, Microelectr. Eng. 157, 64 (2016).

    Article  Google Scholar 

  3. Y.L. Song, Y. Li, F.Q. Zhou, P.F. Ji, X.J. Sun, M.L. Wan, and M.L. Tian, Mater. Lett. 196, 8 (2017).

    Article  Google Scholar 

  4. B.-G. An, Y.W. Chang, H.-R. Kim, G. Lee, M.-J. Kang, J.-K. Park, and J.-C. Pyun, Sens. Actuat. B Chem. 221, 884 (2015).

    Article  Google Scholar 

  5. S. Aksu, E. Bacaksiz, M. Parlak, S. Yılmaz, I. Polat, M. Altunbaş, M. Türksoy, R. Topkaya, and K. Özdoğan, Mater. Chem. Phys. 130, 340 (2011).

    Article  Google Scholar 

  6. S. Butt, N.A. Shah, A. Nazir, Z. Ali, and A. Maqsood, J. Alloys Compd. 587, 582 (2014).

    Article  Google Scholar 

  7. A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, J. Alloys Compd. 557, 53 (2013).

    Article  Google Scholar 

  8. S. Yılmaz, Appl. Surf. Sci. 357, 873 (2015).

    Article  Google Scholar 

  9. A. Podestà, N. Armani, G. Salviati, N. Romeo, A. Bosio, and M. Prato, Thin Solid Films 511–512, 448 (2006).

    Article  Google Scholar 

  10. Z.R. Khan, M. Zulfequar, and M.S. Khan, Mater. Sci. Eng. B 174, 145 (2010).

    Article  Google Scholar 

  11. N. Saxena, P. Kumar, and V. Gupta, J. Lumin. 186, 62 (2017).

    Article  Google Scholar 

  12. J. Li, Ceram. Int. 41, S376 (2015).

    Article  Google Scholar 

  13. M. Munirah, Mater. Sci. Semicond. Process. 16, 1894 (2013).

    Article  Google Scholar 

  14. M. Mahdi, Z. Hassan, S. Ng, J. Hassan, and S.M. Bakhori, Thin Solid Films 520, 3477 (2012).

    Article  Google Scholar 

  15. R.W. Boyd, Nonlinear Optics (Cambridge: Academic Press, 2003).

    Google Scholar 

  16. J. Miragliotta, D. Wickenden, T. Kistenmacher, and W. Bryden, JOSA B 10, 1447 (1993).

    Article  Google Scholar 

  17. S. Schmitt-Rink, D. Miller, and D.S. Chemla, Phys. Rev. B 35, 8113 (1987).

    Article  Google Scholar 

  18. M. Shkir, I.S. Yahia, V. Ganesh, H. Algarni, and S. AlFaify, Mater. Lett. 176, 135 (2016).

    Article  Google Scholar 

  19. M. Shkir, M. Kilany, and I.S. Yahia, Ceram. Int. 43, 14923 (2017).

    Article  Google Scholar 

  20. M. Shkir, S. AlFaify, I.S. Yahia, V. Ganesh, and H. Shoukry, Phys. B Condens. Matter 508, 41 (2017).

    Article  Google Scholar 

  21. M. Muthusamy and S. Muthukumaran, Optik Int. J. Light Electron. Opt. 126, 5200 (2015).

    Article  Google Scholar 

  22. N. Shah, A. Nazir, W. Mahmood, W. Syed, S. Butt, Z. Ali, and A. Maqsood, J. Alloys Compd. 512, 27 (2012).

    Article  Google Scholar 

  23. T. Sivaraman, V. Narasimman, V. Nagarethinam, and A. Balu, Prog. Natl. Sci. Mater. Int. 25, 392 (2015).

    Article  Google Scholar 

  24. M. Wu, S. Yu, L. He, L. Yang, and W. Zhang, Sci. Rep. 7, 103 (2017).

    Article  Google Scholar 

  25. A. Nazir, A. Toma, N.A. Shah, S. Panaro, S. Butt, W. Raja, K. Rasool, and A. Maqsood, J. Alloys Compd. 609, 40 (2014).

    Article  Google Scholar 

  26. Z. Wei, Y. Wang, L. Ma, and X. Wu, Phys. B Condens. Matter 525, 98 (2017).

    Article  Google Scholar 

  27. K. Nieto-Zepeda, A. Guillén-Cervantes, K. Rodríguez-Rosales, J. Santos-Cruz, D. Santos-Cruz, M.D.L.L. Olvera, O. Zelaya-Ángel, J. Santoyo-Salazar, L. HernÁndez-HernÁndez, and G. Contreras-Puente, Res. Phys. 7, 1971 (2017).

    Google Scholar 

  28. M. Shkir, S. AlFaify, I.S. Yahia, M.S. Hamdy, V. Ganesh, and H. Algarni, J. Nanopart. Res. 19, 328 (2017).

    Article  Google Scholar 

  29. M. Shkir and S. AlFaify, Sci. Rep. 7, 16091 (2017).

    Article  Google Scholar 

  30. M. Shkir, S. AlFaify, V. Ganesh, and I.S. Yahia, Solid State Sci. 70, 81 (2017).

    Article  Google Scholar 

  31. M. Shakir, S. Kushwaha, K. Maurya, G. Bhagavannarayana, and M. Wahab, Solid State Commun. 149, 2047 (2009).

    Article  Google Scholar 

  32. N. Chahmat, A. Haddad, A. Ain-Souya, R. Ganfoudi, N. Attaf, and M. Ghers, J. Modern Phys. 3, 1781 (2012).

    Article  Google Scholar 

  33. H. Aydın, C. Aydın, A.A. Al-Ghamdi, W.A. Farooq, and F. Yakuphanoglu, Optik Int. J. Light Electron. Opt. 127, 1879 (2016).

    Article  Google Scholar 

  34. C.-B. Kim and C.B. Su, Meas. Sci. Technol. 15, 1683 (2004).

    Article  Google Scholar 

  35. V. Ganesh, I. Yahia, S. AlFaify, and M. Shkir, J. Phys. Chem. Solids. 100, 115 (2017).

    Article  Google Scholar 

  36. M. Shkir, V. Ganesh, S. AlFaify, and I.S. Yahia, J. Mater. Sci. Mater. Electron. 28, 10573 (2017).

    Article  Google Scholar 

  37. A. Hasnat and J. Podder, Int. J. Phys. Sci. 7, 6158 (2012).

    Google Scholar 

  38. A.A. Ziabari and F. Ghodsi, Sol. Energy Mater Sol. Cells 105, 249 (2012).

    Article  Google Scholar 

  39. Y. Sun, H. Xu, B. Da, S.-F. Mao, and Z.-J. Ding, Chin. J. Chem. Phys. 29, 663 (2016).

    Article  Google Scholar 

  40. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlička, and J. Non-Crystall, Sol. 326, 399 (2003).

    Google Scholar 

  41. H. Ticha and L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2002).

    Google Scholar 

  42. C.C. Wang, Phys. Rev. B 2, 2045 (1970).

    Article  Google Scholar 

  43. J. Wynne, Phys. Rev. Lett. 29, 650 (1972).

    Article  Google Scholar 

  44. H. Nasu and J.D. Mackenzie, Opt. Eng. 26, 262102 (1987).

    Article  Google Scholar 

  45. R. Adair, L. Chase, and S.A. Payne, Phys. Rev. B 39, 3337 (1989).

    Article  Google Scholar 

  46. S. Tripathi and R. Kaur, Opt. Commun. 352, 55 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Shkir.

Ethics declarations

Conflict of interest

Authors declares that there is no conflict of interest in the current article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z.R., Shkir, M., Ganesh, V. et al. Linear and Nonlinear Optics of CBD Grown Nanocrystalline F Doped CdS Thin Films for Optoelectronic Applications: An Effect of Thickness. J. Electron. Mater. 47, 5386–5395 (2018). https://doi.org/10.1007/s11664-018-6437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6437-9

Keywords

Navigation