Skip to main content
Log in

SnTexSe1−x Alloy: An Effective Alternative to SnSe Nano-crystalline Thin Films for Optoelectronic Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As prepared by fusion, SnTexSe1−x (x = 0.68) alloy is found to possess mixed phases of hexagonal Te and orthorhombic SnSe. The deposited films of this alloy demonstrate incongruent evaporation of the constituents. Reductions in c-parameter and strain along the z-axis in lattices of SnSe and Te constituents have been observed in these films at 353 K. These deviations in the structure of SnTexSe1−x films make it superior to SnSe for various optoelectronic applications. The absorption coefficient of SnTexSe1−x films is higher than SnSe, and its bandgap attains a value of 0.93 eV. Further, resistivity value of SnTexSe1−x (∼ 6.12 × 10−2 Ω cm) is lower and carrier concentration (∼ 1.31 × 1019 cm−3) is higher than SnSe, whereas its mobility value (∼ 25.8 cm2/V s) matches SnSe and similar materials. The surface quality of SnTexSe1−x improves and number of crystallites increases. The interface of p-SnTexSe1−x with Ag metal forms a Schottky diode. The current–voltage (IV) behaviour of Ag/p-SnTexSe1−x Schottky diodes is analysed and diode parameters are determined by using thermionic emission and diffusion (TED) current transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Logothetidis and H.M. Polatoglou, Phys. Rev. B 36, 7491 (1987).

    Article  Google Scholar 

  2. J.P. Singh and R.K. Bedi, J. Appl. Phys. 68, 2776 (1990).

    Article  Google Scholar 

  3. R.K. Bedi, B.S.V. Gopalan, and J. Mujhi, in Physics and Technology of semiconductor Devices and Integrated Circuits SPIE Publs Conference Proceedings (1992), pp. 104.

  4. V. Kumar, P. Kumar, S. Yadav, V. Kumar, M.K. Bansal, and D.K. Dwivedi, J. Mater. Sci. Mater. Electron. 27, 4043 (2016).

    Article  Google Scholar 

  5. J. Shen, J.M. Woods, Y. Xie, M.D. Morales-Acosta, and J.J. Cha, Adv. Electron. Mater. 2, 1600144 (2016).

    Article  Google Scholar 

  6. P.R. Manivasan and J. Kim, Cryst. Eng. Commun. 17, 807 (2015).

    Article  Google Scholar 

  7. B. Subramanium, C. Sanjeeviraja, and M. Jayachandran, Bull. Electrochem. 18, 349 (2002).

    Google Scholar 

  8. S.V. Eremeev, YuM Koroteev, I.A. Nechaev, and E.V. Chulkov, Phys. Rev. B 89, 165424 (2014).

    Article  Google Scholar 

  9. L.I. Soliman and B.S. Farag, Ind. J. Pure Appl. Phys. 41, 131 (2003).

    Google Scholar 

  10. H.A. Zayed, L.I. Soliman, B.S. Farag, and F.M. Shehata, Ind. J. Pure Appl. Phys. 30, 654 (2001).

    Google Scholar 

  11. S. Ariponnammal, C. Venkateshwaran, and S. Natarajan, Phys. Stat. Sol. (b) 197, K1 (1996).

    Article  Google Scholar 

  12. L.P. Tan, T. Sun, S. Fan, R.V. Ramanujan, and H.H. Hng, J. Alloys Compd. 587, 420 (2014).

    Article  Google Scholar 

  13. N. Padha, A. Devi, A. Banotra, S. Kumar, and A. Kumar, Mater. Res. Exp. 4, 116311 (2017).

    Article  Google Scholar 

  14. B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Manila: Addison-Wesley Publishing Company, 1956), p. 501.

    Google Scholar 

  15. T. Prasada Rao and M.C. Santhoshkumar, Appl. Surf. Sci. 255, 4579 (2009).

    Article  Google Scholar 

  16. M. Bicer and I. Sisman, Appl. Surf. Sci. 257, 2944 (2011).

    Article  Google Scholar 

  17. P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8, 134 (2014).

    Google Scholar 

  18. M. Devika, K.T.R. Reddy, N.K. Reddy, K. Ramesh, R. Ganesan, E.S.R. Gopal, and K.R. Gunasekhar, J. Appl. Phys. 100, 023518 (2006).

    Article  Google Scholar 

  19. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).

    Article  Google Scholar 

  20. D. Beena, K.J. Lethy, R. Vinodkumar, V.P.M. Pillai, V. Ganesan, D.M. Phase, and S.K. Sudheer, Appl. Surf. Sci. 255, 8334 (2009).

    Article  Google Scholar 

  21. K.A. Borup, E.S. Toberer, L.D. Zoltan, G. Nakatsukasa, M. Errico, J.-P. Fleurial, B.B. Iversen, and G. Jeffrey Snyder, Rev. Sci. Instrum. 83, 122 (2012).

    Article  Google Scholar 

  22. M. Wittmer, Phys. Rev. B 43, 4385 (1991).

    Article  Google Scholar 

  23. E.H. Rhoderick and R.H. Wiliams, Metal Semiconductor Contacts, 2nd ed. (Oxford: Clarendon Press, 1988), p. 90.

    Google Scholar 

  24. M.S. Tyagi, Introduction Semiconductor Materials and Devices (Delhi: Wiley, 2008), p. 270.

    Google Scholar 

  25. N. Tugluoglu, S. Karadeniz, M. Sahin, and H. Safak, Appl. Surf. Sci. 233, 320 (2004).

    Article  Google Scholar 

  26. M.A. Yaganeh, S. Rahmatallahpur, A. Nozad, and R.K. Mamedov, Chin. Phys. B 19, 107207 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Padha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, A., Banotra, A., Kumar, S. et al. SnTexSe1−x Alloy: An Effective Alternative to SnSe Nano-crystalline Thin Films for Optoelectronic Applications. J. Electron. Mater. 48, 4335–4341 (2019). https://doi.org/10.1007/s11664-019-07202-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07202-w

Keywords

Navigation