Skip to main content
Log in

Recent Advances and Progress in Development of the Field Effect Transistor Biosensor: A Review

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The vital utilization of biosensors in different domains has led to the design of much more precise and powerful biosensors, since they have the potential to attain information in a fast and simple manner compared to conventional assays. The present review describes the basic concepts, operation, and construction of biosensors and presented an ideology that choice of categorization, selection of immobilization method and advantages are crucial factors for an efficient and commercial biosensor. Amongst various biosensors, the field effect transistor (FET)-based biosensors have shown much more potential and immense advantages such as high detection ability and sensitivity for both neutral and charged biomolecules and, hence, have been explored comprehensively in the present review. This paper discusses the current challenges in device design by mainly focusing on the quantitative and qualitative performance parameters such as sensing surface properties, signal-to-noise ratio and various other factors, since consideration of these factors will eventually address the crucial concerns related to device design and practical limitations. The critical measures to translate the commercialization of biosensors in the market at a high pace have also been discussed. Hence, the discussion on device challenges illustrates that there is a scope of improvement in the areas such as short-channel effects, specificity and nanocavity filling factor for revolutionary advances in FET-based biosensors. Optimal selection of design rules and biosensing material has the potential to feature the next generation of biosensors. The present paper reports that following integrated multidisciplinary approaches and switching to nanotechnology in designing of FET-based biosensors can offer a lot of improvements in the practical key factors (such as low cost and reliability) and opportunities for the biosensors in the marketplace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Clark Jr, and C. Lyons, Ann. N.Y. Acad. Sci. 102, 29 (1962).

  2. P. Mehrotra, J. Oral Biol. Craniofac. Res. 6, 153 (2016).

    Article  Google Scholar 

  3. S. Patel, R. Nanda, S. Sahoo, and E. Mohapatra, Biochem. Res. Int., 3130469 (2016).

    Article  CAS  Google Scholar 

  4. J.C. Dutta and S. Roy, Am. J. Biomed. Sci. 3, 176 (2011).

    Article  Google Scholar 

  5. B.N. Giepmans, S.R. Adams, M.H. Ellisman, and R.Y. Tsien, Science 312, 217 (2006).

    Article  CAS  Google Scholar 

  6. C.S. Pundir, S. Lata, and V. Narwal, Biosens. Bioelectron. 117, 373 (2018).

    Article  CAS  Google Scholar 

  7. S.K. Arya, A. Chaubey, and B.D. Malhotra, Proc. Indian Natl. Sci. Acad. 72, 249 (2006).

    CAS  Google Scholar 

  8. S. Cheng, K. Hotani, S. Hideshima, S. Kuroiwa, T. Nakanishi, M. Hashimoto, and T. Osaka, Materials 7, 2490 (2014).

    Article  CAS  Google Scholar 

  9. H. Du, C.M. Strohsahl, J. Camera, B.L. Miller, and T.D. Krauss, J. Am. Chem. Soc. 127, 7932 (2005).

    Article  CAS  Google Scholar 

  10. A. Hasan, M. Nurunnabi, M. Morshed, A. Paul, A. Polini, T. Kuila, and A. A. Jaffa, BioMed. Res. Int. 2014, 18 (2014).

  11. P. Damborský, J. Švitel, and J. Katrlík, Essays Biochem. 60, 91 (2016).

    Article  Google Scholar 

  12. T. Osaka, M. Datta, and Y. Shacham-Diamand, SSBM (2009).

  13. A. Syahir, K. Usui, K.Y. Tomizaki, K. Kajikawa, and H. Mihara, Microarrays 4, 228 (2015).

    Article  CAS  Google Scholar 

  14. D.A. Hall, J. Ptacek, and M. Snyder, Mech. Ageing Dev. 128, 161 (2007).

    Article  CAS  Google Scholar 

  15. S. Ray, G. Mehta, and S. Srivastava, Proteomics 10, 731 (2010).

    Article  CAS  Google Scholar 

  16. E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park, B.R. Ilic, and T.M. Fahmy, Nat. Nanotechnol. 5, 138 (2010).

    Article  CAS  Google Scholar 

  17. A. Sassolas, L.J. Blum, and B.D. Leca-Bouvier, Biotechnol. Adv. 30, 489 (2012).

    Article  CAS  Google Scholar 

  18. C. Liu, C. Xu, N. Xue, J.H. Sun, H. Cai, T. Li, and J. Wang, MEMS Sensors-Design and Application, ed. S. Yellampalli (Rijeka: IntechOpen, 2018), p. 49.

    Google Scholar 

  19. R. Halai and M. Cooper, Label-Free Biosensor Methods in Drug Discovery, ed. Y. Fang (New York, NY: Humana Press, 2015), p. 3.

    Google Scholar 

  20. A. Poghossian and M.J. Schöning, Electroanalysis 26, 1197 (2014).

    Article  CAS  Google Scholar 

  21. J. Haccoun, B. Piro, V. Noel, and M.C. Pham, Bioelectrochemistry 68, 218 (2006).

    Article  CAS  Google Scholar 

  22. S. Singh, P.R. Solanki, M.K. Pandey, and B.D. Malhotra, Sensors Actuat. B: Chem. 115, 534 (2006).

    Article  CAS  Google Scholar 

  23. S.K. Sharma, R. Singhal, B.D. Malhotra, N. Sehgal, and A. Kumar, Biotechnol. Lett. 26, 645 (2004).

    Article  CAS  Google Scholar 

  24. S. Datta, L.R. Christena, and Y.R.S. Rajaram, Biotech 3, 7932 (2013).

    Google Scholar 

  25. B. Brena, P. González-Pombo, and F. Batista-Viera, Immobilization of Enzymes and Cells, ed. J.M. Guisan (Totowa, NJ: Humana Press, 2013), p. 15.

  26. Y.C. Syu, W.E. Hsu, and C.T. Lin, ECS J. Solid State Sci. Technol. 7, Q3196 (2018).

    Article  CAS  Google Scholar 

  27. S. M. Sze, and K.K. Ng, (Wiley, 2006).

  28. M. Kaisti, Biosens. Bioelectron. 98, 437 (2017).

    Article  CAS  Google Scholar 

  29. K. Shoorideh and C.O. Chui, IEEE Trans. Electron. Dev. 59, 3104 (2012).

    Article  CAS  Google Scholar 

  30. X. Chen, Z. Guo, G.M. Yang, J. Li, M.Q. Li, J.H. Liu, and X.J. Huang, Mater. Today 13, 28 (2010).

    Article  CAS  Google Scholar 

  31. P. Bergveld, IEEE Trans. Bio-med. Eng. 5, 342 (1972).

    Article  Google Scholar 

  32. P. Bergveld, Sensors Actuat. B: Chem. 88, 1 (2003).

    Article  CAS  Google Scholar 

  33. B. Palan, F.V. Santos, J.M. Karam, B. Courtois, and M. Husak, Sensors Actuat. B: Chem. 57, 63 (1999).

    Article  CAS  Google Scholar 

  34. P.W. Cheung, Theory, Design and Biomedical Applications of Solid State Chemical Sensors (Boca Raton: CRC Press, 1978), pp. 165–173.

    Google Scholar 

  35. S. Caras and J. Janata, Anal. Chem. 52, 1935 (1980).

    Article  CAS  Google Scholar 

  36. M. Yuqing, G. Jianguo, and C. Jianrong, Biotechnol. Adv. 21, 527 (2003).

    Article  CAS  Google Scholar 

  37. H. Im, X.J. Huang, B. Gu, and Y.K. Choi, Nat. Nanotechnol. 2, 430 (2007).

    Article  CAS  Google Scholar 

  38. A.K. Okyay, O. Hanoglu, M. Yuksel, H. Acar, S. Sülek, B. Tekcan, and M.O. Guler, Microsyst. Technol. 23, 889 (2017).

    Article  CAS  Google Scholar 

  39. C.H. Kim, C. Jung, K.B. Lee, H.G. Park, and Y.K. Choi, Nanotechnology 22, 135502 (2011).

    Article  CAS  Google Scholar 

  40. C.H. Kim, C. Jung, H.G. Park, and Y.K. Choi, Biochip J. 2, 127 (2008).

    Google Scholar 

  41. L. Torsi, M. Magliulo, K. Manoli, and G. Palazzo, Chem. Soc. Rev. 42, 8612 (2013).

    Article  CAS  Google Scholar 

  42. D. Sarkar, and K. Banerjee, in 70th Device Research Conference IEEE (2012), p. 83.

  43. T. Goda and Y. Miyahara, Biosens. Bioelectron. 45, 89 (2013).

    Article  CAS  Google Scholar 

  44. R. Narang, M. Saxena, R.S. Gupta, and M. Gupta, IEEE Electron. Device Lett. 33, 266 (2011).

    Article  CAS  Google Scholar 

  45. G. Wadhwa and B. Raj, J. Electron. Mater. 47, 4683 (2018).

    Article  CAS  Google Scholar 

  46. M. Donnelly, D. Mao, J. Park, and G. Xu, J. Phys. D Appl. Phys. 51, 493001 (2018).

    Article  CAS  Google Scholar 

  47. Y. Kim, T. Lim, C.H. Kim, C.S. Yeo, K. Seo, S.M. Kim, and M.H. Yoon, NPG Asia Mater. 10, 1086 (2018).

    Article  Google Scholar 

  48. E. Macchia, M. Ghittorelli, F. Torricelli, and L. Torsi, in 7th IEEE International Workshop (2017), p. 68.

  49. P. Yu, L. Bai, W. Li, C.G. Elósegui, J. Fei, and L. Mao, Front. Chem 7, 313 (2019).

    Article  Google Scholar 

  50. K. Shoorideh and C.O. Chui, Proc. Natl. Acad. Sci. 111, 5111 (2014).

    Article  CAS  Google Scholar 

  51. A. Porwal, and C. Sahu, in IEEE Computer Society Annual Symposium on VLSI (2018), p. 281.

  52. H.K. Hunt and A.M. Armani, Nanoscale 2, 1544 (2010).

    Article  CAS  Google Scholar 

  53. I. Sarangadharan, A.K. Pulikkathodi, C.H. Chu, Y.W. Chen, A. Regmi, P.C. Chen, and Y.L. Wang, ECS J Solid State Sci. Technol. 7, Q3032 (2018).

    Article  CAS  Google Scholar 

  54. B. Ibarlucea, L. Römhildt, F. Zörgiebel, S. Pregl, M. Vahdatzadeh, W. Weber, and G. Cuniberti, Appl. Sci. 8, 950 (2018).

    Article  CAS  Google Scholar 

  55. I. Capek, Carbon Nanotubes-Growth and Applications, ed. M. Naraghi (Rijeka: IntechOpen, 2011), p. 75.

    Google Scholar 

  56. S. Naseh, M.J. Deen, and C.H. Chen, Microelectron. Reliab. 46, 201 (2006).

    Article  CAS  Google Scholar 

  57. S.J. Lee, C.H. Choi, A. Kamath, R. Clark, and D.L. Kwong, IEEE Electr. Device Lett. 24, 105 (2003).

    Article  CAS  Google Scholar 

  58. A.N. Sokolov, M.E. Roberts, and Z. Bao, Mater. Today 12, 12 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Wadhwa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhera, T., Kakkar, D., Wadhwa, G. et al. Recent Advances and Progress in Development of the Field Effect Transistor Biosensor: A Review. J. Electron. Mater. 48, 7635–7646 (2019). https://doi.org/10.1007/s11664-019-07705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07705-6

Keywords

Navigation