Skip to main content

Advertisement

Log in

A Study on Electrical and Electrochemical Characteristics of Friction Stir Welded Lithium-Ion Battery Tabs for Electric Vehicles

  • TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study attempts to join copper (Cu) and aluminium (Al) sheets in micro-thickness by using friction stir welding. These materials are being used as current collectors in lithium-ion (li-ion) battery which are employed as power sources for electric vehicles. Several experiments have been carried out, followed by the measurement of electrical conductivity by using a 4-probe setup and electrochemical analysis by using a potentiodynamic polarization test and an electro impedance spectroscopy test in lithium phosphorus hexafluoride (LiPF6), an electrolytic medium. The welded samples have been found to achieve an electrical conductivity of 9% less than the base Cu and the corrosion resistance of the welded samples has been found to be increasing because of the formation of inter-metallic compounds such as Al4Cu9, AlCu4 and AlCu at the weld interface. Among them AlCu4 has the highest hardness and the recovery elastic modulus than the rest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Eftekhari, ACS Sustain. Chem. Eng. 7, 3684 (2018). https://doi.org/10.1021/acssuschemeng.7b04330.

    Article  CAS  Google Scholar 

  2. C. Iclodean, B. Varga, N. Burnete, D. Cimerdean, and B. Jurchiş, IOP Conf. Ser. Mater. Sci. Eng. 252, 012058 (2017). https://doi.org/10.1088/1757-899x/252/1/012058.

    Article  CAS  Google Scholar 

  3. S. Shawn Lee, T.H. Kim, S.J. Hu, W.W. Cai, and J.A. Abell, in MSEC2010-34168 (2015). https://doi.org/10.1115/msec2010-34168.

  4. P. Wolfram, N. Lutsey, ICCT (2016), pp. 1–23. https://doi.org/10.13140/rg.2.1.2045.3364.

  5. H.K. Charles, Appl. Phys. Lab. 26, 402 (2005).

    CAS  Google Scholar 

  6. V.V. Silberschmidt, Advanced Materials Modelling for Structures. Advanced Structured Materials, ed. H. Altenbach and S. Kruch (Berlin: Springer, 2013), p. 307.. https://doi.org/10.1007/978-3-642-35167-9.

    Chapter  Google Scholar 

  7. G.L.B. Matijasevic and L. Brandt, Electr. Eng. II, 17 (2009).

    Google Scholar 

  8. A. Das, L. Dezhi, W. David, and G. David, World Electr. Veh. J. 9, 1 (2018). https://doi.org/10.3390/wevj9020022.

    Article  Google Scholar 

  9. D. Nagy and O. Krammer, Solder. Surf. Mt. Technol. (2017). https://doi.org/10.1108/SSMT-11-2016-0029.

    Article  Google Scholar 

  10. M.J. Brand, E.I. Kolp, P. Berg, T. Bach, P. Schmidt, and A. Jossen, J. Energy Storage 12, 45 (2017). https://doi.org/10.1016/j.est.2017.03.019.

    Article  Google Scholar 

  11. J. Hayashi and Y. Miyazawa, IJST-2013 IOP Conf Ser. Mater. Sci. Eng. (2014). https://doi.org/10.1088/1757-899x/61/1/012015.

    Article  Google Scholar 

  12. P. Kah, R. Suoranta, and J. Martikainen, in Proceedings of 16th International Conference on Mechanika (2011). https://doi.org/10.13140/2.1.3298.1284.

  13. J. Huang, X. He, Y. Guo, Z. Zhang, Y. Shi, and D. Fan, J. Manuf. Process. 25, 16 (2017). https://doi.org/10.1016/j.jmapro.2016.10.003.

    Article  Google Scholar 

  14. S. Ukita, K. Kokubo, T. Masuko, and T. Irie, Weld. Int. 17, 541 (2003). https://doi.org/10.1533/wint.2003.3143.

    Article  Google Scholar 

  15. R. Borrisutthekul, P. Mitsomwang, S. Rattanachan, and Y.M. Mutoh, Energy Res J 1, 82 (2010).

    Article  Google Scholar 

  16. G. Chryssolouris, Mech. Eng. Ser (2003). https://doi.org/10.1007/978-1-4757-4084-4.

    Article  Google Scholar 

  17. I. Mys and M. Schmidt, Proc. SPIE 6107, 610703 (2006). https://doi.org/10.1117/12.648376.

    Article  CAS  Google Scholar 

  18. T. Solchenbach, P. Plapper, and W. Cai, J. Manuf. Process. 16, 183 (2014). https://doi.org/10.1016/j.jmapro.2013.12.002.

    Article  Google Scholar 

  19. W. Thomas and E. Nicholas, Mater. Des. 18, 269 (1997). https://doi.org/10.1016/S0261-3069(97)00062-9.

    Article  CAS  Google Scholar 

  20. D. Mishra, S.K. Sahu, R.P. Mahto, S.K. Pal, and K. Pal, Lect. Notes Multidiscip. Ind. Eng. (2019). https://doi.org/10.1007/978-981-13-0378-4_6.

    Article  Google Scholar 

  21. M.P. Iqbal, R. Jain, and S.K. Pal, J. Mater. Process. Technol. 274, 116258 (2019). https://doi.org/10.1016/j.jmatprotec.2019.116258.

    Article  CAS  Google Scholar 

  22. D. Mishra, R.B. Roy, S. Dutta, S.K. Pal, and D. Chakravarty, J. Manuf. Process. 36, 373 (2018). https://doi.org/10.1016/j.jmapro.2018.10.016.

    Article  Google Scholar 

  23. R.P. Mahto, R. Kumar, S.K. Pal, and S.K. Panda, J. Manuf. Process. 31, 624 (2018). https://doi.org/10.1016/j.jmapro.2017.12.017.

    Article  Google Scholar 

  24. R.P. Mahto, C. Gupta, M. Kinjawadekar, A. Meena, and S.K. Pal, J. Manuf. Process. 38, 370 (2019). https://doi.org/10.1016/j.jmapro.2019.01.028.

    Article  Google Scholar 

  25. K.P. Mehta and V.J. Badheka, Mater. Manuf. Process. 31, 233 (2016). https://doi.org/10.1080/10426914.2015.1025971.

    Article  CAS  Google Scholar 

  26. O. Mypati, A. Sadhu, S. Sahu, and D. Mishra, J. Eng. Manuf. (2019). https://doi.org/10.1177/0954405419838379.

    Article  Google Scholar 

  27. R.P. Mahto, R. Bhoje, S.K. Pal, H.S. Joshi, and S. Das, Mater. Sci. Eng. A 652, 136 (2016). https://doi.org/10.1016/j.msea.2015.11.064.

    Article  CAS  Google Scholar 

  28. R.P. Mahto and S.K. Pal, in MSEC, vol 1 (2018).

  29. R. Beygi, M. Kazeminezhad, and A.H. Kokabi, Trans. Nonferrous Metals Soc. China 22, 2925 (2012). https://doi.org/10.1016/s1003-6326(11)61555-0.

    Article  CAS  Google Scholar 

  30. A. Elrefaey, M. Takahashi, and K. Ikeuchi, J. High Temp. Soc. 30, 286 (2004).

    Article  CAS  Google Scholar 

  31. I. Galvão, J. Oliveira, A. Loureiro, and D. Rodrigues, Sci. Technol. Weld. Join. 16, 681 (2011). https://doi.org/10.1179/1362171811Y.0000000057.

    Article  CAS  Google Scholar 

  32. I. Galvão, C. Leitão, A. Loureiro, and D.M. Rodrigues, Mater. Des. 42, 259 (2012). https://doi.org/10.1016/j.matdes.2012.05.058.

    Article  CAS  Google Scholar 

  33. A. Elrefaey, M. Takahashi, and K. Ikeuchi, Weld. World 49, 93 (2005). https://doi.org/10.1007/BF03266481.

    Article  Google Scholar 

  34. I. Galvão, D. Verdera, D. Gesto, A. Loureiro, and D.M. Rodrigues, J. Mater. Process. Technol. 213, 1920 (2013). https://doi.org/10.1016/j.jmatprotec.2013.05.004.

    Article  CAS  Google Scholar 

  35. P. Kah, C. Vimalraj, J. Martikainen, and R. Suoranta, Int. J. Mech. Mater. Eng. (2015). https://doi.org/10.1186/s40712-015-0037-8.

    Article  Google Scholar 

  36. S. Sattari, H. Bisadi, and M. Sajed, Int. J. Mech. Appl. 2, 1 (2012). https://doi.org/10.5923/j.mechanics.20120201.01.

    Article  Google Scholar 

  37. S. Ahmed, A. Shubhrant, A. Deep, P. Saha, in AIMTDR (2014), pp. 1–5.

  38. D. Kim, J.H. Chang, J. Park, and J.J. Pak, J. Mater. Sci. Mater. Electron. 22, 703 (2011). https://doi.org/10.1007/s10854-011-0357-2.

    Article  CAS  Google Scholar 

  39. M. Elsa, A. Khorram, O.O. Ojo, and M. Paidar, Acad. Proc. Eng. Sci. (2019). https://doi.org/10.1007/s12046-019-1103-3.

    Article  Google Scholar 

  40. K. Hiroshi and O. Seiichi, Trans. JIM 11, 431 (1970).

    Article  Google Scholar 

  41. M.J.M. Hermans and M.H. Biglari, The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects (Berlin: Springer, 2011)https://doi.org/10.1007/978-0-85729-236-0.

    Book  Google Scholar 

  42. L. Valdes, Proc. I-R-E 29, 1429 (1952).

    Google Scholar 

  43. Y. Singh, Int. J. Mod. Phys. Conf. Ser. 22, 745 (2013). https://doi.org/10.1142/S2010194513010970.

    Article  CAS  Google Scholar 

  44. N. Bowler and Y. Huang, Meas. Sci. Technol. (2005). https://doi.org/10.1088/0957-0233/16/11/009.

    Article  Google Scholar 

  45. M.F. Goes, M.A. Sinhoreti, S. Consani, and M.A. Silva, Braz. Dent. J. IOP Conf. Ser. Mater. Sci. Eng. 9, 3 (1998). https://doi.org/10.1088/1742-6596/755/1/011001.

    Article  CAS  Google Scholar 

  46. O. Mypati, S.K. Pal, and P. Srirangam, TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings (Berlin: Springer, 2019)https://doi.org/10.1007/978-3-030-05861-6.

    Book  Google Scholar 

  47. H. Abe, Hitachi chemical technical report, 54, 31.

  48. S. Dai, J. Chen, Y. Ren, Z. Liu, and J. Chen, Int. J. Electrochem. Sci. 12, 10589 (2017). https://doi.org/10.20964/2017.11.28.

    Article  CAS  Google Scholar 

  49. X. Zhang, B. Winget, M. Doeff, J.W. Evans, and T.M. Devine, J. Electrochem. Soc. (2005). https://doi.org/10.1149/1.2041867.

    Article  Google Scholar 

  50. R.P. Mahto, S. Anishetty, A. Sarkar, O. Mypati, S.K. Pal, and J.D. Majumdar, Mater. Metals Mater. Int. (2018). https://doi.org/10.1007/s12540-018-00222-x.

    Article  Google Scholar 

  51. R. Drevet, O. Aaboubi, and H. Benhayoune, J. Solid State Electrochem. (2012). https://doi.org/10.1007/s10008-012-1742-3.

    Article  Google Scholar 

  52. R. Chakraborty, V.S. Seesala, S. Sengupta, S. Dhara, P. Saha, and K. Das, Surf. Interfaces 10, 1 (2018). https://doi.org/10.1016/j.surfin.2017.11.002.

    Article  CAS  Google Scholar 

  53. S.V. Hainsworth, H. Chandler, and T. Page, J. Mater. Res. 11, 1987 (1996).

    Article  CAS  Google Scholar 

  54. S. Weng, Y. Huang, F. Xuan, and L. Luo, Proc. Eng. 130, 1761 (2015). https://doi.org/10.1016/j.proeng.2015.12.325.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Hall Effect Lab of the Physics Department and EPP lab of the Mechanical Engineering Department at IIT Kharagpur for providing the facilities to carry out the post-weld studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjya K. Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mypati, O., Mishra, D., Sahu, S. et al. A Study on Electrical and Electrochemical Characteristics of Friction Stir Welded Lithium-Ion Battery Tabs for Electric Vehicles. J. Electron. Mater. 49, 72–87 (2020). https://doi.org/10.1007/s11664-019-07711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07711-8

Keywords

Navigation