Skip to main content
Log in

Significantly Improved Surface Flashover Characteristics of Epoxy Resin/Al2O3 Nanocomposites in Air, Vacuum and SF6 by Gas-Phase Fluorination

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, epoxy resin incorporated with nano-Al2O3 of various concentrations, 0 wt.%, 1 wt.%, 3 wt.% and 5 wt.%, were prepared and subsequently fluorinated for 15 min, 30 min and 60 min at 40°C in a F2/N2 gas mixture (20/80 v/v) with pressure of 0.05 MPa. Fourier-transform infrared spectroscopy was employed for the chemical characterization of epoxy resin/Al2O3 nanocomposites which showed the molecular-chain scission during the gas-phase fluorination. Later, the effect of gas-phase fluorination on DC flashover characteristics of epoxy resin/Al2O3 nanocomposites was analyzed. It was found that gas-phase fluorination of pure epoxy resin can improve its DC flashover voltage in air and sulfur hexafluoride (SF6). In addition, nano-Al2O3 incorporation leads to a slight decrease of the DC flashover strength but it is still higher than that of non-fluorinated epoxy resin. This proves that suppression of charge accumulation can increase the DC flashover voltage of epoxy resin. The vacuum DC flashover voltage of epoxy resin/Al2O3 nanocomposites decreased by 35.8% after 30 min fluorination. However, the vacuum DC flashover voltage of epoxy resin incorporated with 1 wt.% nano-Al2O3 was 17.5% higher than that of unfilled epoxy resin. Based on the secondary electron emission avalanche model of vacuum flashover, the experimental results were analyzed. It was found that the fluorination modifies the surface molecular structure of epoxy resin/Al2O3 nanocomposites, which may weaken its adsorption capacity for gases and make it easier to desorb gases and reduce flashover voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tanaka, J. IEEE Trans. Dielectr. Electr. Insul. 12, 914 (2005).

    Article  CAS  Google Scholar 

  2. T. Nitta and K. Nakanishi, J. IEEE Trans. Dielectr. Electr. Insul. 26, 418 (1991).

    Article  Google Scholar 

  3. T. Giang and J. Kim, J. Electron. Mater. 46, 627 (2017).

    Article  CAS  Google Scholar 

  4. H.E. Dehaghani and M. Nazempour, Smart Nanoparticles Technology, Vol. 23 (London: IntechOpen, 2012), p. 520.

    Google Scholar 

  5. E.K. Kim, J. Kim, H. Noh, and Y.-H. Kim, J. Electr. Mater. 35, 512 (2006).

    Article  CAS  Google Scholar 

  6. Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, J. IEEE Trans. Dielectr. Electr. Insul. 17, 653 (2010).

    Article  CAS  Google Scholar 

  7. J. Yu, R. Huo, C. Wu, X. Wu, G. Wang, and P. Jiang, J. Macromol. Res. 20, 816 (2012).

    Article  CAS  Google Scholar 

  8. A. Waleed, M.M. Tavakoli, L. Gu, S. Hussain, D. Zhang, S. Poddar, Z. Wang, R. Zhang, and Z. Fan, J. Nano Lett. 17, 4951 (2017).

    Article  CAS  Google Scholar 

  9. A. Waleed, M.M. Tavakoli, L. Gu, Z. Wang, D. Zhang, A. Manikandan, Q. Zhang, R. Zhang, Y.L. Chueh, and Z. Fan, J. Nano Lett. 17, 523 (2017).

    Article  CAS  Google Scholar 

  10. A. Waleed and Z. Fan, J. Sci. Bull. 62, 645 (2017).

    Article  CAS  Google Scholar 

  11. B.X. Du, H.C. Liang, J. Li, and C. Zhang, J. IEEE Trans. Dielectr. Electr. Insul. 25, 631 (2018).

    Article  CAS  Google Scholar 

  12. C. Li, J. Hu, C. Lin, B. Zhang, G. Zhang, and J. He, J. Phys. D Appl. Phys. 50, 065301 (2017).

    Article  Google Scholar 

  13. Y. Liu, Z. An, J. Cang, Y. Zhang, and F. Zheng, J. IEEE Trans. Dielectr. Electr. Insul. 19, 1143 (2012).

    Article  Google Scholar 

  14. L. Lan, Q. Zhong, Y. Yin, and X. Li, 2013 IEEE International Conference on Solid Dielectrics (ICSD) (2013), pp. 444–447.

  15. G. Iyer, R.S. Gorur, and A. Krivda, J. IEEE Trans. Dielectr. Electr. Insul. 19, 118 (2012).

    Article  CAS  Google Scholar 

  16. C. Li, J. He, and J. Hu, J. IEEE Trans. Dielectr. Electr. Insul. 23, 3071 (2016).

    Article  CAS  Google Scholar 

  17. A. Mohamad, G. Chen, Y. Zhang, and Z. An, J. IEEE Trans. Dielectr. Electr. Insul. 22, 101 (2015).

    Article  CAS  Google Scholar 

  18. L. Que, Z. An, Y. Ma, D. Xie, F. Zheng, and Y. Zhang, J. IEEE Trans. Dielectr. Electr. Insul. 24, 1153 (2017).

    Article  CAS  Google Scholar 

  19. S. Kumara, Y. Serdyuk, and S. Gubanski, J. IEEE Trans. Dielectr. Electr. Insul. 17, 1754 (2011).

    Article  Google Scholar 

  20. S. Kumara, S. Alam, R. Imtiaz, Y. Serdyuk, and S. Gubanski, J. IEEE Trans. Dielectr. Electr. Insul. 19, 1084 (2012).

    Article  Google Scholar 

  21. X. Jun and I.D. Chalmers, J. Phys. D Appl. Phys. 30, 1055 (1997).

    Article  CAS  Google Scholar 

  22. F. Wang, T. Zhang, J. Li, K.M. Zeeshan, L. He, Z. Huang, and Y. He, J. IEEE Trans. Dielectr. Electr. Insul. 26, 702 (2019).

    Article  CAS  Google Scholar 

  23. Y. Chen, W. Yue, Z. Bian, Y. Fan, and Q. Lei, J. Iran. Polym. 22, 377 (2013).

    Article  CAS  Google Scholar 

  24. S. Singha and M.J. Thomas, J. IEEE Trans. Dielectr. Electr. Insul. 15, 12 (2008).

    Article  CAS  Google Scholar 

  25. A. Tressaud, E. Durand, C. Labrugère, A.P. Kharitonov, and L.N. Kharitonova, J. Fluor. Chem. 128, 378 (2007).

    Article  CAS  Google Scholar 

  26. C. Li, J. Hu, C. Lin, B. Zhang, G. Zhang, and J. He, J. AIP Adv. 6, 025017 (2016).

    Article  Google Scholar 

  27. Z. An, H. Xiao, F. Liu, F. Zheng, Q. Lei, and Y. Zhang, J. IEEE Trans. Dielectr. Electr. Insul. 23, 2278 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aashir Waleed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.Z., Waleed, A., Khan, A. et al. Significantly Improved Surface Flashover Characteristics of Epoxy Resin/Al2O3 Nanocomposites in Air, Vacuum and SF6 by Gas-Phase Fluorination. J. Electron. Mater. 49, 3400–3408 (2020). https://doi.org/10.1007/s11664-020-08001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08001-4

Keywords

Navigation