Skip to main content
Log in

Frequency-Dependent Admittance Analysis of Au/n-Si Structure with CoSO4-PVP Interfacial Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A film of cobalt sulfate (CoSO4)-doped polyvinylpyrrolidone (PVP) blend was spin-coated on n-Si. Electrical measurements were conducted on the Au/n-Si structure with the CoSO4-PVP film sandwiched between them. The frequency dispersion of the main electrical and dielectric parameters and the corresponding mechanisms were evaluated. The extra capacitance originating from the contribution of interface states (Nss) resulted in a fairly large frequency dispersion in CV plots. These states also influence the carrier transport and conduction mechanism, thus the determination of real Nss values is crucial to evaluate the nonideal behavior of such plots. The values of Nss were calculated using the Hill–Coleman method. The dielectric constant (ε′) and dielectric loss (ε″) exhibited higher values in the low-frequency region as a result of interface and dipole polarization, while the alternating-current (AC) electrical conductivity (σac) generally decreased. The variation of the loss tangent with increasing frequency of the applied field confirmed the effect of some internal field within the CoSO4-PVP film accompanied by the external AC field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981).

    Google Scholar 

  2. Ç.Ş. Güçlü, A.F. Özdemir, A. Karabulut, A. Kökce, and Ş. Altındal, Mater. Sci. Semicond. Process. 89, 26 (2019).

    Article  CAS  Google Scholar 

  3. S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, and Ş. Altındal, J. Electron. Mater. 47, 6945 (2018).

    Article  CAS  Google Scholar 

  4. B.K. Singh and S. Tripathi, Superlattice Microstruct. 120, 288 (2018).

    Article  CAS  Google Scholar 

  5. Y. Badali, Ş. Altındal, and İ. Uslu, Prog. Nat. Sci. Mater. 28, 325 (2018).

    Article  CAS  Google Scholar 

  6. L. Ai, J. Jiang, and L. Li, J. Mater. Sci. Mater. Electron. 21, 206 (2010).

    Article  CAS  Google Scholar 

  7. A. Tataroğlu, Ş. Altındal, and Y. Azizian-Kalandaragh, Physica B 582, 411996 (2020).

    Article  CAS  Google Scholar 

  8. E.H. Nicollian and J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (New York: Wiley, 1982).

    Google Scholar 

  9. Ç. Gökhan Türk, S. Orkun Tan, Ş. Altındal, and B. İnem, Physica B 582, 411979 (2020).

    Article  CAS  Google Scholar 

  10. Y. Badali, S. Koçyiğit, İ. Uslu, and Ş. Altındal, Bull. Mater. Sci. 42, 225 (2019).

    Article  CAS  Google Scholar 

  11. H.G. Çetinkaya, A. Kaya, Ş. Altındal, and S. Koçyiğit, Can. J. Phys. 93, 1213 (2015).

    Article  CAS  Google Scholar 

  12. S. Altındal Yerişkin, M. Balbaşı, and İ. Orak, J. Mater. Sci. Mater. Electron. 28, 14040 (2017).

    Article  CAS  Google Scholar 

  13. M. Ravi, S. Bhavani, K. Kiran Kumar, and V.V.R. Narasima Rao, Solid State Sci. 19, 85 (2013).

    Article  CAS  Google Scholar 

  14. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, M. Prabu, G. Hirankumar, H. Nithya, and C. Sanjeeviraja, J. Non-Cryst. Solids 357, 3751 (2011).

    Article  CAS  Google Scholar 

  15. K. Rajesh, V. Crasta, N.B. Rithin Kumar, G. Shetty, and P.D. Rekha, J. Polym. Res. 26, 1 (2019).

    Article  CAS  Google Scholar 

  16. K. Sreekanth, T. Siddaiah, N.O. Gopal, Y. Madhava Kumar, and Ch Ramu, J. Sci. Adv. Mater. Devices 4, 230 (2019).

    Article  Google Scholar 

  17. Ş. Altındal, Ö. Sevgili, and Y. Azizian-Kalandaragh, J. Mater. Sci. Mater. Electron. 30, 9273 (2019).

    Article  CAS  Google Scholar 

  18. Y. Şafak-Asar, T. Asar, Ş. Altındal, and S. Özçelik, J. Alloys Compd. 628, 442 (2015).

    Article  CAS  Google Scholar 

  19. I. Orak, A. Kocyigit, and S. Alindal, Chin. Phys. B 26, 0128102 (2017).

    Article  CAS  Google Scholar 

  20. E.E. Tanrikulu, D.E. Yildiz, A. Günen, and S. Altindal, Phys. Scr. 90, 095801 (2015).

    Article  CAS  Google Scholar 

  21. İ. Taşçıoğlu, Ö. Tüzün Özmen, H.M. Şağban, E. Yağlıoğlu, and Ş. Altındal, J. Electron. Mater. 46, 2379 (2017).

    Article  CAS  Google Scholar 

  22. İ. Yücedağ, Ş. Altındal, and A. Tataroğlu, Microelectron. Eng. 84, 180 (2007).

    Article  CAS  Google Scholar 

  23. H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    Article  CAS  Google Scholar 

  24. R.K. Gupta, K. Ghosh, and P.K. Kahol, Curr. Appl. Phys. 9, 933 (2009).

    Article  Google Scholar 

  25. W.A. Hill and C.C. Coleman, Solid-State Electron. 23, 987 (1980).

    Article  CAS  Google Scholar 

  26. V.V. Daniel, Dielectric Relaxation (London: Academic, 1967).

    Google Scholar 

  27. A. Zaafouri, M. Megdiche, and M. Gargouri, J. Alloys Compd. 584, 152 (2014).

    Article  CAS  Google Scholar 

  28. A. Kaya, Ö. Vural, H. Tecimer, S. Demirezen, and Ş. Altındal, Curr. Appl. Phys. 14, 322 (2014).

    Article  Google Scholar 

  29. İ.M. Afandiyeva, İ. Dökme, Ş. Altındal, M.M. Bülbül, and A. Tataroğlu, Microelectron. Eng. 85, 247 (2008).

    Article  CAS  Google Scholar 

  30. C.P. Symth, Dielectric Behaviour and Structure (New York: McGraw-Hill, 1995).

    Google Scholar 

  31. M. Popescu and I. Bunget, Physics of Solid Dielectrics (Amsterdam: Elsevier, 1984).

    Google Scholar 

  32. A. Chelkowski, Dielectric Physics (Amsterdam: Elsevier, 1980).

    Google Scholar 

  33. H.E. Lapa, A. Kökce, A.F. Özdemir, İ. Uslu, and Ş. Altindal, Bull. Mater. Sci. 41, 82 (2018).

    Article  CAS  Google Scholar 

  34. H.G. Çetinkaya, M. Yıldırım, P. Durmuş, and Ş. Altındal, J. Alloys Compd. 728, 896 (2017).

    Article  CAS  Google Scholar 

  35. C. Jayachandraiah and G. Krishnaiah, J. Mater. Sci. 52, 7058 (2017).

    Article  CAS  Google Scholar 

  36. Y. Laxmayyaguddi, N. Mydur, A. Shankar Pawar, V. Hebri, M. Vandana, G. Sanjeev, and D. Hundekal, ACS Omega 3, 14188 (2018).

    Article  CAS  Google Scholar 

  37. J.C. Maxwell, Electricity and Magnetism (London: Oxford Press, 1973).

    Google Scholar 

  38. A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. Polym. Phys. 33, 1737 (1995).

    Article  CAS  Google Scholar 

  39. P. Pissis and A. Kyritsis, Solid State Ion. 97, 105 (1997).

    Article  CAS  Google Scholar 

  40. K. Prabakar, S.K. Narayandass, and D. Mangalaraj, Phys. Status Solidi (A) 199, 507 (2003).

    Article  CAS  Google Scholar 

  41. A.A. Sattar and S.A. Rahman, Phys. Status Solidi (A) Appl. Res. 200, 415 (2003).

    Article  CAS  Google Scholar 

  42. M.H. Najar, K. Majid, and M. AbdullahDar, J. Mater. Sci. Mater. Electron. 17, 6913 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlke Taşçıoğlu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşçıoğlu, İ., Sevgili, Ö., Azizian-Kalandaragh, . et al. Frequency-Dependent Admittance Analysis of Au/n-Si Structure with CoSO4-PVP Interfacial Layer. J. Electron. Mater. 49, 3720–3727 (2020). https://doi.org/10.1007/s11664-020-08091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08091-0

Keywords

Navigation