Skip to main content
Log in

Impact of Hetero-Dielectric Ferroelectric Gate Stack on Analog/RF Performance of Tunnel FET

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the characteristics of a hetero-dielectric ferroelectric tunnel (HD-FeTFET). Extensive simulations show that using a hetero-dielectric gate architecture in the lateral direction (non-ferroelectric/ferroelectric/non-ferroelectric) results in more desirable analog/RF characteristics. The proposed structure is compared with conventional tunnel field effect transistors (TFETs) and ferroelectric TFET (FeTFET). Simulation results manifest that HD-FeTFET is superior to other compared structures, and benefits from both ferroelectric and hetero-dielectric structure. Negative capacitance effect in ferroelectric causes a step-up voltage transformer, as a result the subthreshold swing decreases. Owing to two different dielectric constants in the hetero-dielectric structure, the electric field enhances; thereby, the on-state current increases. In this paper, important analog/RF figures of merit, such as cut-off frequency (fT), maximum oscillation frequency (fmax), transconductance frequency product, and intrinsic time delay (τ), are investigated. Also, linearity parameters including VIP2, VIP3, IIP3, and the 1-dB compression point are considered. We achieve average sub-threshold swing of 14 mV for 5 decades for HD-FeTFET, and is improved by ∼ 48% and ∼ 30% for TFET and FeTFET, respectively. Moreover, the ION/IOFF ratio and the on-state current for the proposed structure are 1011 and 5.3 × 10−7 (A/μm), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Agrawal, V. Gupta, R. Srivastava, and S.S. Rajput, IEEE Trans. Electron Devices 65, 1902–1909 (2018). https://doi.org/10.1109/TED.2018.2813522.

    Article  CAS  Google Scholar 

  2. K. Vaidyanathan, D.H. Morris, U.E. Avci, H. Liu, T. Karnik, H. Wang, and I.A. Young, IEE J. Explor. Solid-State Comput. Devices Circuits 4, 10–18 (2018). https://doi.org/10.1109/jxcdc.2018.2812242.

    Article  Google Scholar 

  3. M. Karbalaei and D. Dideban, Silicon (2019). https://doi.org/10.1007/s12633-019-00272-9.

    Article  Google Scholar 

  4. G.V. Luong, S. Strangio, A.T. Tiedemann, P. Bernardy, S. Trellenkamp, P. Palestri, S. Mantl, and Q.T. Zhao, IEEE J. Electron. Devices Soc. 6, 1033–1040 (2018). https://doi.org/10.1109/jeds.2018.2825639.

    Article  CAS  Google Scholar 

  5. M.A. Raushan, N. Alam, and M.J. Siddiqui, IEEE Trans. Electron Devices 65, 4701–4708 (2018). https://doi.org/10.1109/TED.2018.2861943.

    Article  CAS  Google Scholar 

  6. C. Chen, Q. Huang, J. Zhu, Z. Wang, Y. Zhao, R. Jia, L. Guo, and R. Huang, IEEE Trans. Electron Devices 65, 2003–2009 (2018). https://doi.org/10.1109/TED.2018.2812828.

    Article  CAS  Google Scholar 

  7. B. Lu, H. Lu, Y. Zhang, Y. Zhang, X. Cui, Z. Lv, S. Yang, and C. Liu, IEEE Trans. Electron Devices 65, 299–307 (2017). https://doi.org/10.1109/TED.2017.2775341.

    Article  Google Scholar 

  8. G.B. Beneventi, E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, IEEE Electron. Device Lett. 34, 1557–1559 (2013). https://doi.org/10.1109/LED.2013.2284290.

    Article  CAS  Google Scholar 

  9. J.S. Jang and W.Y. Choi, J. Semicond. Technol. Sci. 11, 272–277 (2011). https://doi.org/10.5573/JSTS.2011.11.4.272.

    Article  Google Scholar 

  10. S. Mantl, S. Strangio, P. Palestri, D. Esseni, L. Selmi, F. Crupi, S. Richter, Q.T. Zhao, and S. Mantl, IEEE J. Electron. Devices Soc. 3, 223–232 (2015). https://doi.org/10.1109/JEDS.2015.2392793.

    Article  Google Scholar 

  11. C. Anghel, P. Chilagani, A. Amara, and A. Vladimirescu, Appl. Phys. Lett. 96, 2008–2011 (2010). https://doi.org/10.1063/1.3367880.

    Article  CAS  Google Scholar 

  12. G. Fiori and G. Iannaccone, IEEE Electron. Device Lett. 30, 1096–1098 (2009). https://doi.org/10.1109/LED.2009.2028248.

    Article  CAS  Google Scholar 

  13. A. Samipour, D. Dideban, and H. Heidari, ECS J. Solid State Sci. Technol. 8, M111–M117 (2019). https://doi.org/10.1149/2.0021912jss.

    Article  CAS  Google Scholar 

  14. A.H. Bayani, D. Dideban, M. Vali, and N. Moezi, Semicond. Sci. Technol. 31, 1–7 (2016). https://doi.org/10.1088/0268-1242/31/4/045009.

    Article  CAS  Google Scholar 

  15. Y. Yang, P. Guo, G. Han, K.L. Low, C. Zhan, Y. Yeo, Y. Yang, P. Guo, G. Han, K.L. Low, C. Zhan, and Y. Yeo, J. Appl. Phys. (2015). https://doi.org/10.1063/1.4729068.

    Article  Google Scholar 

  16. S. Guin, A. Chattopadhyay, A. Karmakar, A. Mallik, and S. Member, IEEE J. Electron. Devices 61, 2515–2522 (2014).

    Article  CAS  Google Scholar 

  17. K. Boucart and A.M. Ionescu, IEEE Trans. Electron. Device 54, 1725–1733 (2007). https://doi.org/10.1109/TED.2007.899389.

    Article  CAS  Google Scholar 

  18. S. Anand and R.K. Sarin, J. Semicond Chin. Inst. Electron. 38, 1–7 (2017). https://doi.org/10.1088/1674-4926/38/2/024001.

    Article  CAS  Google Scholar 

  19. S. Saurabh and M.J. Kumar, Jpn. J. Appl. Phys. 48, 1–7 (2009). https://doi.org/10.1143/jjap.48.064503.

    Article  Google Scholar 

  20. P. Bal, B. Ghosh, P. Mondal, M.W.A. Ball, and M. Mani, J. Comput. Electron. 13, 230–234 (2014). https://doi.org/10.1007/s10825-013-0505-4.

    Article  CAS  Google Scholar 

  21. S. Salahuddin and S. Datta, Nano Lett. 8, 405–410 (2008).

    Article  CAS  Google Scholar 

  22. S. Kumar, P.K. Singh, S. Chander, A. Rahangdale, K. Baral, and S. Jit, Dual-material ferroelectric stacked gate SiO 2/PZT SOI tunnel FETs with improved performance: design and analysis, in 2018 5th int. Conf. Signal process. integr. networks, SPIN 2018 (2018), pp. 842–845. https://doi.org/10.1109/spin.2018.8474280.

  23. A. Saeidi, A. Biswas, and A.M. Ionescu, Solid State Electron. 124, 16–23 (2016). https://doi.org/10.1016/j.sse.2016.07.025.

    Article  CAS  Google Scholar 

  24. M. Kobayashi and T. Hiramoto, AIP Adv. 6, 025113 (2016). https://doi.org/10.1063/1.4942427.

    Article  CAS  Google Scholar 

  25. C. Jiang, R. Liang, J. Wang, H.W. Kim, J.H. Kim, S. Wan, C. Liu, P. Chen, M. Xie, S. Liu, J. Lee, S. Huang, and S. Liu, Jpn. J. Appl. Phys. 55, 04EB08 (2016).

    Article  Google Scholar 

  26. M.H. Lee, Y.T. Wei, J.C. Lin, C.W. Chen, W.H. Tu, and M. Tang, AIP Adv. 4, 1–7 (2014). https://doi.org/10.1063/1.4898150.

    Article  CAS  Google Scholar 

  27. A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S.R. Bakaul, R. Ramesh, and S. Salahuddin, Nat. Mater. (2014). https://doi.org/10.1038/nmat4148.

    Article  Google Scholar 

  28. S. Marjani, S.E. Hosseini, and R. Faez, AIP Adv. 6, 1–8 (2016). https://doi.org/10.1063/1.4962969.

    Article  CAS  Google Scholar 

  29. S.K. Mitra, R. Goswami, and B. Bhowmick, Superlattices Microstruct. (2016). https://doi.org/10.1016/j.spmi.2016.01.040.

    Article  Google Scholar 

  30. S. Saurabh, M.J. Kumar, and S. Member, IEEE Trans. Electron Devices 58, 404–410 (2011).

    Article  CAS  Google Scholar 

  31. P. Jain, V. Prabhat, and B. Ghosh, J. Comput. Electron. 14, 537–542 (2015). https://doi.org/10.1007/s10825-015-0685-1.

    Article  CAS  Google Scholar 

  32. T. Rollo, S. Member, and D. Esseni, IEEE Electron Device Lett. 39, 603–606 (2018). https://doi.org/10.1109/LED.2018.2795026.

    Article  CAS  Google Scholar 

  33. A. Biswas, S.S. Dan, C. Le Royer, W. Grabinski, and A.M. Ionescu, Microelectron. Eng. 98, 334–337 (2012). https://doi.org/10.1016/j.mee.2012.07.077.

    Article  CAS  Google Scholar 

  34. K. Florent, Ferroelectric HfO2 for emerging ferroelectric semiconductor devices. Thesis. Rochester Institute of Technology (2015).

  35. A. Ortiz-Conde, F.J. García Sánchez, J.J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, Microelectron. Reliab. 42, 583–596 (2002). https://doi.org/10.1016/s0026-2714(02)00027-6.

    Article  Google Scholar 

  36. M.D.V Martino, S.Member, J.A. Martino, and S. Member, Drain induced barrier thinning on TFETs with different source/drain engineering, in IEEE (2014), pp. 9–12.

  37. M. Aslam, D. Sharma, D. Soni, S. Yadav, B.R. Raad, D.S. Yadav, and N. Sharma, Micro Nano Lett. 13, 1480–1485 (2018). https://doi.org/10.1049/mnl.2018.5129.

    Article  CAS  Google Scholar 

  38. A. Sarkar, A. Kumar Das, S. De, and C. Kumar Sarkar, Microelectron. J. 43, 873–882 (2012). https://doi.org/10.1016/j.mejo.2012.06.002.

    Article  Google Scholar 

  39. J. Madan and R. Chaujar, IEEE Trans. Nanotechnol. 17, 41–48 (2018). https://doi.org/10.1109/TNANO.2017.2650209.

    Article  CAS  Google Scholar 

  40. S. Tirkey, B.R. Raad, A. Gedam, and D. Sharma, Micro Nano Lett. 13, 18–23 (2017). https://doi.org/10.1049/mnl.2017.0197.

    Article  CAS  Google Scholar 

  41. J. Madan and R. Chaujar, IEEE Trans. Device Mater. Reliab. 16, 227–234 (2016). https://doi.org/10.1109/TDMR.2016.2564448.

    Article  CAS  Google Scholar 

  42. S. Ghosh, K. Koley, and C.K. Sarkar, Micro Nano Lett. 13, 35–40 (2017). https://doi.org/10.1049/mnl.2017.0326.

    Article  CAS  Google Scholar 

  43. A. Gupta, N. Maurya, and S. Rai, Impact of dielectric pocket on analog/RF performance of short channel double gate MOSFET, in 2017 4th Int. Conf. Power, Control Embed. Syst. ICPCES 2017, vol. 2017 (2017), pp. 1–6. https://doi.org/10.1109/icpces.2017.8117649.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ebrahim Hosseini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, M., Peyravi, F. & Hosseini, S.E. Impact of Hetero-Dielectric Ferroelectric Gate Stack on Analog/RF Performance of Tunnel FET. J. Electron. Mater. 49, 5638–5646 (2020). https://doi.org/10.1007/s11664-020-08315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08315-3

Keywords

Navigation