Skip to main content
Log in

Electrochemical Analysis of Indigo Carmine in Food and Water Samples Using a Poly(Glutamic Acid) Layered Multi-walled Carbon Nanotube Paste Electrode

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Some colourants are hazardous to living species; hence, a powerful and fast methodology is required for the analysis of those colourants in food and water samples. A modest electrochemically polymerised glutamic acid layered multi-walled carbon nanotube paste electrode [P(GA)LMWCNTPE] was functionalised for the sensing of indigo carmine (IC) by powerful differential pulse voltammetry (DPV) and cyclic voltammetry (CV) approaches. Within the optimised experimental conditions, the P(GA)LMWCNTPE holds an acceptable and high rate of electro-catalytic activity towards the redox behaviour of IC. The projected P(GA)LMWCNTPE shows a decent selectivity for IC in the presence of methyl orange. The modified sensor shows an acceptable linear growth between oxidative peak current and concentration in both CV and DPV methods with fine limit of detection values of 4.2 µM and 0.36 µM, respectively. Additionally, the developed sensor was effectively applied to detect IC in food and water samples. The morphological and surface activities of the modified and unmodified electrodes were determined through field emission scanning electron microscopy, electrochemical impedance spectroscopy, and CV techniques. The P(GA)LMWCNTPE requires a simple preparation procedure and is low-cost, with acceptable storage stability, sensitivity, and reproducibility.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.G. Manjunatha, J. Food Drug Anal. 26, 292 (2018).

    Article  CAS  Google Scholar 

  2. K. Hunger, Industrial Dyes: Chemistry, Properties, Applications, 1st ed. (New York: Wiley, 2007), pp. 1–10.

    Google Scholar 

  3. E. Gurr, Synthetic Dyes in Biology, Medicine and Chemistry, 1st ed. (Amsterdam: Elsevier, 2012), pp. 1–11.

    Google Scholar 

  4. G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I. Banat, R. Marchant, and W. Smyth, Appl. Microbiol. Biotechnol. 56, 81 (2001).

    Article  CAS  Google Scholar 

  5. F.M.D. Chequer, G.A. Rodrigues de Oliveira, E.R.A. Ferraz, J.C. Cardoso, M.V.B. Zanoni, and D. Palma de Oliveira, IntechOpen. (2013). https://doi.org/10.5772/53659.

    Article  Google Scholar 

  6. S. Ammar, R. Abdelhedi, C. Flox, C. Arias, and E. Brillas, Environ. Chem. Lett. 4, 229 (2006).

    Article  CAS  Google Scholar 

  7. K. Ikeda, Y. Sannohe, S. Araki, and S. Inutsuka, Gastrointest. Endosc. 26, 19801 (1980).

    Article  Google Scholar 

  8. J.E. Song and S.K. Kim, J. Urol. 98, 669 (1967).

    Article  CAS  Google Scholar 

  9. M. Altok, A.F. Sahin, M.I. Gokce, G.R. Ekin, and R.T. Divrik, Int. Braz. J. Urol. 43, 1052 (2017).

    Article  Google Scholar 

  10. M. Fujita, C. Kuroda, N. Hosomi, E. Inoue, K. Kuriyama, H. Ohhigashi, S. Kishimoto, O. Ishikawa, and A. Nakaizumi, J. Vasc. Interv. Radiol. 6, 119 (1995).

    Article  CAS  Google Scholar 

  11. W. Fao, Codex Alimentarius Commission, Safety of Colors, GSFA MPLs of Indigo Carmine (2015), p. 132.

  12. J. Naitoh and B.M. Fox, Urology. 44, 271 (1994).

    Article  CAS  Google Scholar 

  13. T.Y. Ng, T.D. Datta, and B.I. Kirimli, J. Urol. 116, 132 (1976).

    Article  CAS  Google Scholar 

  14. U.R. Lakshmi, V.C. Srivastava, I.D. Mall, and D.H. Lataye, J. Environ. Manag. 90, 710 (2009).

    Article  CAS  Google Scholar 

  15. W.K. Kennedy, K. Wirjoatmadja, T.J. Akamatsu, and J.J. Bonica, J. Urol. 100, 775 (1968).

    Article  Google Scholar 

  16. M.S. Secula, I. Creţescu, and S. Petrescu, Desalination 277, 227 (2011).

    Article  CAS  Google Scholar 

  17. P.A. Pushpanjali, J.G. Manjunatha, C. Raril, and D.K. Ravishankar, RJLBPCS. 5, 820 (2019).

    CAS  Google Scholar 

  18. A. Mittal, J. Mittal, and L. Kurup, J. Hazard. Mater. 137, 591 (2006).

    Article  CAS  Google Scholar 

  19. T.H. Fereja, S.A. Kitte, M.N. Zafar, M.I. Halawa, S. Han, W. Zhang, and G. Xu, Analyst. 145, 1041 (2020).

    Article  CAS  Google Scholar 

  20. H. Oka, Y. Ikai, K. Kawamura, M. Yamada, and H. Inoue, J. Chromatogr. A 411, 437 (1987).

    Article  CAS  Google Scholar 

  21. K.S. Minioti, C.F. Sakellariou, and N.S. Thomaidis, Anal. Chim. Acta 583, 103 (2007).

    Article  CAS  Google Scholar 

  22. J.J. Berzas, J.R. Flores, M.J.V. Llerena, and N.R. Farinas, Anal. Chim. Acta 391, 353 (1999).

    Article  Google Scholar 

  23. C.F. Tsai, C.H. Kuo, and D.Y.C. Shih, J. Food Drug Anal. 23, 453 (2015).

    Article  CAS  Google Scholar 

  24. M.J.B. Alvarez, M.T.F. Abedul, and A.C. Garcia, Anal. Chim. Acta 462, 31 (2002).

    Article  Google Scholar 

  25. G.K. Jayaprakash, B.E. Kumara Swamy, J.P. Mojica Sanchez, X. Li, S.C. Sharma, and S.L. Lee, J. Mol. Liq. 315, 113719 (2020).

    Article  Google Scholar 

  26. J.G. Manjunatha, Sens. Biosens. Res. 16, 79 (2017).

    Google Scholar 

  27. G.K. Jayaprakash, B.E. Kumara Swamy, S.C. Sharma, and J.J. Santoyo-Flores, Microchem. J. 158, 105116 (2020).

    Article  Google Scholar 

  28. N. Hareesha and J.G. Manjunatha, Mater. Res. Innov. 24, 349 (2019). https://doi.org/10.1080/14328917.2019.1684657.

    Article  CAS  Google Scholar 

  29. G.K. Jayaprakash, B.E.K. Swamy, N. Casillas, and R. Flores-Moreno, Electrochim. Acta 248, 225 (2017).

    Article  CAS  Google Scholar 

  30. B.M. Amrutha, J.G. Manjunatha, S. Aarti Bhatt, and N. Hareesha, J. Mater. Environ. Sci. 10, 668 (2019).

    CAS  Google Scholar 

  31. Z. Fan, P. Cheng, M. Liu, D. Li, G. Liu, Y. Zhao, Z. Ding, F. Chen, B. Wang, X. Tan, Z. Wang, and J. Han, New J. Chem. 41, 8656 (2017).

    Article  CAS  Google Scholar 

  32. N. Hareesha and J.G. Manjunatha, J. Iran. Chem. Soc. 17, 1507 (2020).

    Article  Google Scholar 

  33. E. Lavirons, J. Electroanal. Chem. 52, 355 (1974).

    Article  Google Scholar 

  34. I.T. Shadi, B.Z. Chowdhry, M.J. Snowden, and R. Withnall, Spectrochim. Acta A 59, 2213e20 (2003).

    Google Scholar 

  35. B.C. Liau, T.T. Jong, and S.S. Chen, J. Pharm. Biomed. 43, 346 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the financial support from VGST, Bangalore under the Research Project No. KSTePS/VGST-KFIST(L1)2016-2017/GRD-559/2017-18/126/333, 21/11/2017, and the Department of Science and Technology (DST) for the INSPIRE Fellowship (Registration Number: IF180479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Ethics declarations

Conflict of interest

This work has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hareesha, N., Manjunatha, J.G., Amrutha, B.M. et al. Electrochemical Analysis of Indigo Carmine in Food and Water Samples Using a Poly(Glutamic Acid) Layered Multi-walled Carbon Nanotube Paste Electrode. J. Electron. Mater. 50, 1230–1238 (2021). https://doi.org/10.1007/s11664-020-08616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08616-7

Keywords

Navigation