Skip to main content
Log in

Elaboration and Characterization of Ni (NPs)-PANI Hybrid Material by Electrodeposition for Non-Enzymatic Glucose Sensing

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A two-step process was used to prepare a nickel-polyaniline nanocomposite (Ni (NPs)-PANI). The first step consisted of the electrodeposition of polyaniline (PANI) in the form of thin films on fluorine-doped tin oxide (FTO) substrates from a solution of aniline, lithium perchlorate, and sulfuric acid at a pH of 0.5. In the next step, the obtained Ni (NPs) were deposed in this polyaniline films. The structural, morphological, and electrocatalytic properties of the prepared nanocomposites were then investigated. X-ray diffraction (XRD) confirmed the cubic structure of the nanocomposites, and Fourier-transform infrared spectroscopy (FTIR) indicated the existence of nickel and polyaniline in the prepared nanocomposites. Morphological analysis carried out through SEM revealed that the nanocomposites exhibit uniform dispersion of nickel nanoparticles into the polyaniline matrix. Amperometry and cyclic voltammetry were employed to investigate the electrocatalytic glucose oxidation behavior of the nanocomposite electrode in the alkaline medium. The prepared nickel-polyaniline nanocomposite electrode exhibited high sensitivity (278.8 µA mM−1 cm−2) in a range from 0.02 to 1 mM at a sufficiently fast response time of 3 s and a low glucose detection limit of 1 µM (S/N = 3). A cost-effective and straightforward synthesis procedure to prepare Ni (NPs)-PANI nanocomposite would make this material an efficient glucose sensor with appropriate stability, higher reproducibility, and excellent sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Martinkova and M. Pohanka, Anal. Lett. 48, 2509 (2015).

    Article  CAS  Google Scholar 

  2. N. Ch and R. Paily, Micromachines 5, 722 (2014).

    Article  Google Scholar 

  3. D. Albanese, A. Sannini, F. Malvano, R. Pilloton and M. Matteo Di, Food Anal. Methods 7, 1002 (2013

    Article  Google Scholar 

  4. D. Espes, M. Martinell, H. Liljebäck and P.O. Carlsson, Curr. Diab. Rep. 15, 12 (2015).

    Article  CAS  Google Scholar 

  5. E. Nohra, S. Buckman, K. Bochicchio, J. Chamieh, S. Reese, C. Merrill and G.V. Bochicchio, Contemp. Clin. Trials 50, 1 (2016).

    Article  Google Scholar 

  6. L. Chen, L. Liu, Q. Guo, Z. Wang, G. Liu, S. Chen, and Hou, H. RSC advances (2017).

  7. T. Sridara, J. Upan, G. Saianand, A. Tuantranont, C. Karuwan and J. Jakmunee, Sens 20, 808 (2020).

    Article  CAS  Google Scholar 

  8. N. Singer, R.G. Pillai, A.I.D. Johnson, K.-D. Harris and A.B. Jemere, Microchim. Acta 187, 196 (2020).

    Article  CAS  Google Scholar 

  9. G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang and X. Zhang, Microchim. Acta 180, 161 (2012).

    Article  CAS  Google Scholar 

  10. K. Dhar and D.R. Mahapatra, Microchim. Acta 185, 1 (17).

    Google Scholar 

  11. D.W. Hwang, S. Lee, M. Seo, and T.D. Chung, Anal Chim. Acta 1033, 1 (2018).

    Article  CAS  Google Scholar 

  12. X. Niu, X. Li, J. Pan, Y. He, F. Qiu and Y. Yan, RSC Adv 6, 84893 (2016)

    Article  CAS  Google Scholar 

  13. H. Shu, L. Cao, G. Chang, H. He, Y. Zhang and Y. He, Electrochim. Acta 132, 524 (2014).

    Article  CAS  Google Scholar 

  14. T. Unmussig, A. Weltin, S. Urban, P. Daubinger, G.A. Urban and J. Kieninger, J. Electroanal. Chem. 816, 215 (2018).

    Article  CAS  Google Scholar 

  15. C.H. Wang, S.W. Lee, C.J. Tseng, J.W. Wu, I.M. Hung, C.M. Tseng and J.K. Chang, J. Alloy Compd 615, S496 (2014).

    Article  CAS  Google Scholar 

  16. H. Yang, Z. Wang, Q. Zhou and C. Xu, J. Hou Microchim. Acta 186, 631 (2019).

    Article  CAS  Google Scholar 

  17. D. Lakhdari, A. Guittoum, N. Benbrahim, O. Belgherbi, M. Berkani, Y. Vasseghian and N. Lakhdari, Food Chem. Toxicol. 151, 112099 (2021).

    Article  CAS  Google Scholar 

  18. R. Wang, X. Liang, H. Liu, L. Cui, X. Zhang and C. Liu, Microchim Acta. 185, 331 (2018).

    Article  CAS  Google Scholar 

  19. J.H. Kim, J.H. Cho, G.S. Cha, C.W. Lee, H.B. Kim and S.H. Paek, Biosens. Bioelectron. 14, 907 (2000).

    Article  CAS  Google Scholar 

  20. A.G. MacDiarmid and A.J. Epstein, Synth Met 69, 85 (1995).

    Article  CAS  Google Scholar 

  21. B. Malhotra, C. Dhand, N. Dwivedi, S. Mishra, P. Solanki, V. Mayandi, R.W. Beuerman, S. Ramakrishna and R. Lakshminarayanan, Nanobiosens. Dis. Diagn. 4, 25 (2015).

    Article  Google Scholar 

  22. X. Gao, X. Du, D. Liu, H. Gao, P. Wang and J. Yang, Sci. Rep. 10, 1365 (2020).

    Article  CAS  Google Scholar 

  23. G. Wu, X. Song, Y.F. Wu, X. Chen, F. Luoa and X. Chen, Talanta 105, 379 (2013).

    Article  CAS  Google Scholar 

  24. X. Niu, M. Lan, H. Zhao and C. Chen, Anal. Chem. 85, 3561 (2013)

    Article  CAS  Google Scholar 

  25. S. Ci, T. Huang, Z. Wen, S. Cui, S. Mao, D.A. Steeber and J. Chen, Biosens. Bioelectron. 54, 251 (2014).

    Article  CAS  Google Scholar 

  26. F.J. Garcia-Garcia, P. Salazar, F. Yubero, A.R. Gonzalez-Elipe, Electrochim. Acta 201, 38 (2016).

    Article  CAS  Google Scholar 

  27. Y. Miao, L. Ouyang, S. Zhou, L. Xu, Z. Yang, M. Xiao and R. Ouyang, Biosens. Bioelectron. 53, 428 (2014).

    Article  CAS  Google Scholar 

  28. K. Dhara and D.R. Mahapatra, Microchim. Acta 185, 41 (2017).

    Google Scholar 

  29. H. Liu, X. Wu, B. Yang, Z.H. Li, L. Lei and X. Zhang, Electrochim. Acta 174, 745 (2015).

    Article  CAS  Google Scholar 

  30. Z. Cui, H. Yin, Q. Nie, D. Qin, W. Wu and X. He, J. Electroanal. Chem. 757, 51 (2015).

    Article  CAS  Google Scholar 

  31. H. Tian, M. Jia, M. Zhang, J. Hi, Electrochim. Acta. 96, 285 (2013).

    Article  CAS  Google Scholar 

  32. A.A. Ensafi, N. Ahmadi and B. Rezaei, Sens. Actuators. B Chem 239, 807 (2017)

    Article  CAS  Google Scholar 

  33. D. Roy, A.K. Das, R. Saini, P.K. Singh, P. Kumar, M. Hussain, A. Mandal and A.R. Dixit, Mat. Manuf. Process. 32, 365 (2017).

    Article  CAS  Google Scholar 

  34. D.H. Ninh, T.T. Thao, P.D. Long and N.N. Dinh, Open J. Org. Polym. Mat. 6, 30 (2016).

    Article  CAS  Google Scholar 

  35. A.A. Hermas and M.A.Salam, Prog. Org. Coat. 77, 403 (2014).

    Article  CAS  Google Scholar 

  36. J. Wang, Y.G. Ning, Y.F. Wen, Y. Wen, T. Dong, D.M. Wang, J.M. Chen and L.J. Zhang, Z. Phys. Chem. 227, 89 (2013).

    Article  CAS  Google Scholar 

  37. L. Jia, X. Wei, L. Lv, X. Zhang, X. Duan, Y. Xu and J. Wang, Electrochim. Acta 280, 315 (2018).

    Article  CAS  Google Scholar 

  38. U. Sarac, M. Kaya and M. Celalettin Baykul, Turk. J. Phys. 41, 536 (2017).

    Article  CAS  Google Scholar 

  39. J. Laska and J. Widlarz, Polym 46, 1485 (2005).

    Article  CAS  Google Scholar 

  40. S.H. Kazemi, M.A. Kiani, R. Mohamadi and L. Eskandarian, Bull. Mat. Sci. 375, 1001 (2014)

    Article  CAS  Google Scholar 

  41. C.O. Baker, X. Huang, W. Nelson and R.B. Kaner, Chem. Soc. Rev. 46, 1510 (2017)

    Article  CAS  Google Scholar 

  42. K.J. Babu, T. Rajkumar, D.J. Yoo, P. Siew-Moi and G. Gnana Kumar, ACS Sustain. Chem. Eng. 6, 16982 (2018)

    Article  CAS  Google Scholar 

  43. A.M. Ahmed, S.Y. Sayed, G.A. El-Nagar, W.M. Morsi, M.S. El-Deab and El-B.E. Anadouli, J. Electroanal. Chem. 835, 313 (2019).

  44. L. Qin, L. He, J. Zhao, B. Zhao, Y. Yin and Y. Yang, Sens. Actuators B 240, 779 (2017).

    Article  CAS  Google Scholar 

  45. Xu. Mengli, S. Yonghai, Y. Yihan, G. Coucong, S. Yuan, W. Linyu and W. Li, Sens. Actuators B 252, 1187 (2017).

  46. A. Mohamed Azharudeen, R. Karthiga, M. Rajarajan and A. Suganthi. Arabian J. Chem. 13, 4053 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lakhdari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhdari, D., Guittoum, A., Benbrahim, N. et al. Elaboration and Characterization of Ni (NPs)-PANI Hybrid Material by Electrodeposition for Non-Enzymatic Glucose Sensing. J. Electron. Mater. 50, 5250–5258 (2021). https://doi.org/10.1007/s11664-021-09031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09031-2

Keywords

Navigation