Skip to main content
Log in

Photoluminescence Properties and Antibacterial Activity of BiFeO3 and BiFeO3-CoFe2O4 Composite

  • Brief Communication
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, BiFeO3 and BiFeO3-CoFe2O4 bioceramic compounds were investigated and their photoluminescence (PL) characteristics and antimicrobial activity were compared in detail. The crystallite size, crystalline strain, and optical band gap of the compounds were estimated using the Williamson-Hall (W-H) plot, which was derived from powder x-ray diffraction patterns. The W-H plot revealed that the crystallite size increased and the crystalline strain value decreased for the BiFeO3-CoFe2O4 when compared to pure BiFeO3. The formation of a binary phase structure was confirmed by the Raman spectrum of the synthesized composite material. In the PL analysis, weak PL visible emission bands were observed for both the pure and composite samples, indicating that fewer oxygen vacancy defects occurred. The antimicrobial activity of pure BiFeO3 and BiFeO3-CoFe2O4 was investigated in detail, and the results are discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. M. Kiani, A.B. Kiani, S. AliKhan, S. Rehmana, Q. UllahKhan, I. Mahmood, A.S. Saleemi, A. Jalil, M. Sohail, and L. Zhou, Facile synthesis of Gd and Sn co-doped BiFeO3 supported on nitrogen doped graphene for enhanced photocatalytic activity. J. Phys. Chem. Solids 130, 222 (2019)

    Article  CAS  Google Scholar 

  2. M. Kiani, S. Rizwan, and S. Irfan, Facile synthesis of a BiFeO3/nitrogen-doped graphene nanocomposite system with enhanced photocatalytic activity. J. Phys. Chem. Solids 121, 8 (2018)

    Article  CAS  Google Scholar 

  3. F. Bhadala, L. Suthar, P. Kumari, and M. Roy, Rietveld refinement, morphological, vibrational, Raman, optical and electrical properties of Ca/Mn co-doped BiFeO3. Mater. Chem. Phys. 247, 122719 (2020)

    Article  CAS  Google Scholar 

  4. P. Li, L. Li, M. Xu, Q. Chen, and Y. He, Enhanced photocatalytic property of BiFeO3/N-doped graphene composites and mechanism insight. Appl. Surf. Sci. 396, 879 (2017)

    Article  CAS  Google Scholar 

  5. M.W. Kadi, R.M. Mohamed, and A.A. Ismail, Facile synthesis of mesoporous BiFeO3/graphene nanocomposites as highly photoactive under visible light. Opt. Mater. 104, 109842 (2020)

    Article  CAS  Google Scholar 

  6. H. Sepahvand, and S. Sharifnia, Photocatalytic overall water splitting by Z-scheme g-C3N4/BiFeO3 heterojunction. Int. J. Hydrog. Energy. 44, 23658 (2019)

    Article  CAS  Google Scholar 

  7. S. Bharathkumar, M. Sakar, J. Archana, M. Navaneethan, and S. Balakumar, Interfacial engineering in 3D/2D and 1D/2D bismuth ferrite (BiFeO3)/Graphene oxide nanocomposites for the enhanced photocatalytic activities under sunlight. Chemosphere 284, 131280 (2021)

    Article  CAS  Google Scholar 

  8. E.A. Volnistem, R.D. Bini, D.M. Silva, J.M. Rosso, G.S. Dias, L.F. Cótica, and I.A. Santos, Intensifying the photocatalytic degradation of methylene blue by the formation of BiFeO3/Fe3O4 nanointerfaces. Ceram. Int. 46, 18768 (2020)

    Article  CAS  Google Scholar 

  9. X. Liao, T.T. Li, H.T. Ren, Z. Mao, X. Zhang, J.H. Lin, and C.W. Lou, Enhanced photocatalytic performance through the ferroelectric synergistic effect of p-n heterojunction BiFeO3/TiO2 under visible-light irradiation. Ceram. Int. 47, 10786 (2021)

    Article  CAS  Google Scholar 

  10. M. Humay, Z. Amir Zada, M. Li, X. Xie, Y. Zhang, F. Qu, and L.J. Raziq, Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B Environ. 180, 219 (2016)

    Article  Google Scholar 

  11. E. Karamian and S. Sharifnia, Enhanced visible light photocatalytic activity of BiFeO3-ZnO p-n heterojunction for CO2 reduction. Mater. Sci. Eng. B. 238, 142 (2018)

    Article  Google Scholar 

  12. T. Bavani, J. Madhavan, S. Prasad, M.S. AlSalhi, and M.J. AlJaafreh, A straightforward synthesis of visible light driven BiFeO3/AgVO3 nanocomposites with improved photocatalytic activity. Environ. Pollut. 269, 116067 (2021)

    Article  CAS  Google Scholar 

  13. Y. Ma, P. Lv, F. Duan, J. Sheng, S. Lu, H. Zhu, M. Du, and M. Chen, Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity. J. Alloys Compd. 834, 155158 (2020)

    Article  CAS  Google Scholar 

  14. M. Bagherzadeh and R. Kaveh, A new SnS2-BiFeO3/reduced graphene oxide photocatalyst with superior photocatalytic capability under visible light irradiation. J. Photochem. Photobiol. A Chem. 359, 11 (2018)

    Article  CAS  Google Scholar 

  15. Y.P. Bhoi and B.G. Mishra, Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation. Chem. Eng. J. 344, 391 (2018)

    Article  CAS  Google Scholar 

  16. S. Yathavan, R. Venkatapathy, R.J. Karthikeyan, S. Gokul Raj, A. Durairajan, G. Ramesh Kumar, and S. Mohan Sriramalu, Investigations on the enhanced dye degradation activity of heterogeneous BiFeO3-GdFeO3 nanocomposite photocatalyst. Heliyon. 5, e01831 (2019)

    Article  Google Scholar 

  17. H. Baqiah, Z.A. Talib, A.H. Shaari, N. Tamchek, and N.B. Ibrahim, Synthesis, optical and magnetic behavior of (BiFeO3)1–x(α-Fe2O3)x nanocomposites. Mater. Sci. Eng. B. 231, 5 (2018)

    Article  CAS  Google Scholar 

  18. X. Wang, Z. Hu, S. Agrestini, J.H. Martín, M. Valvidares, R. Sankar, F.C. Chou, Y.H. Chu, A. Tanaka, L.H. Tjeng, and E. Pellegri, Evidence for largest room temperature magnetic signal from Co2+ in antiphase-free and fully inverted CoFe2O4 in multiferroic-ferrimagnetic BiFeO3-CoFe2O4 nanopillar thin films. J. Magn. Magn. Mater. 530, 167940 (2021)

    Article  CAS  Google Scholar 

  19. A.N. Arifiadi, K.T. Kim, I.Y. Khairani, C.B. Park, K.H. Kim, and S.K. Kim, Synthesis and multiferroic properties of high-purity CoFe2O4-BiFeO3 nanocomposites. J. Alloys. Comp. 867, 159008 (2021)

    Article  CAS  Google Scholar 

  20. Y. Zhao, J. Li, Z. Yin, X. Zhang, J. Huang, L. Cao, and H. Wang, Interface-mediated local conduction at tubular interfaces in BiFeO3-CoFe2O4 nanocomposites. J. Alloys Compd. 823, 153699 (2020)

    Article  CAS  Google Scholar 

  21. N. Sheoran, V. Kumar, and A. Kumar, Comparative study of structural, magnetic and dielectric properties of CoFe2O4 @ BiFeO3 and BiFeO3@ CoFe2O4 core-shell nanocomposites. J. Magn. Magn. Mater. 475, 30 (2019)

    Article  CAS  Google Scholar 

  22. A. Khalid, M. Saleem, S. Naseem, S.M. Ramay, H.M. Shaikh, and S. Atiq, Magneto-electric coupling and multifunctionality in BiFeO3-CoFe2O4 core-shell nano-composites. Ceram. Int. 46, 12828 (2020)

    Article  CAS  Google Scholar 

  23. F. An, G. Zhong, Q. Zhu, Y. Huang, Y. Yang, and S. Xie, Synthesis and mechanical properties characterization of multiferroic BiFeO3-CoFe2O4 composite nanofibers. Ceram. Int. 44, 11617 (2018)

    Article  CAS  Google Scholar 

  24. Y. Huang, S. Li, Z. Tian, W. Liang, J. Wang, X. Li, X. Cheng, J. He, and J. Liu, Strong room temperature spontaneous exchange bias in BiFeO3-CoFe2O4 nanocomposites. J. Alloys Compd. 762, 438 (2018)

    Article  CAS  Google Scholar 

  25. T.C. Kim, S.H. Lee, H.K. Jung, Y.E. Kim, J.W. Choi, D. Yang, and D.H. Kim, Effect of sputtering conditions on the structure and magnetic properties of self-assembled BiFeO3-CoFe2O4 nanocomposite thin films. J. Magn. Magn. Mater. 471, 116 (2019)

    Article  CAS  Google Scholar 

  26. X. Tang, J. Dai, X. Zhu, W. Song, and Y. Sun, Magnetic annealing effects on multiferroic BiFeO3/CoFe2O4 bilayered films. J. Alloys. Compd. 509, 4748 (2011)

    Article  CAS  Google Scholar 

  27. M. Alam, S. Talukdar, and K. Mandal, Multiferroic properties of bilayered BiFeO3/CoFe2O4 nano-hollowspheres. Mater. Lett. 210, 80 (2018)

    Article  CAS  Google Scholar 

  28. H.B. Sharma, K. Nomita Devi, V. Gupta, J.H. Lee, and S.B. Singh, Ac electrical conductivity and magnetic properties of BiFeO3-CoFe2O4 nanocomposites. J. Alloys Compd. 25, 32 (2014)

    Article  Google Scholar 

  29. N. Adhlakha, K.L. Yadav, M. Truccato, P. Rajak, A. Battiato, and E. Vittone, Multiferroic and magnetoelectric properties of BiFeO3-CoFe2O4-poly (vinylidene-fluoride) composite films. Eur. Polym. J. 91, 100–110 (2017)

    Article  CAS  Google Scholar 

  30. A. Das, S. De, S. Bandyopadhyay, S. Chatterjee, and D. Das, Magnetic, dielectric and magnetoelectric properties of BiFeO3-CoFe2O4 nanocomposites. J. Alloys Compd. 697, 353 (2017)

    Article  CAS  Google Scholar 

  31. X.M. Liu, S.Y. Fu, and C.J. Huang, Synthesis and magnetic characterization of novel CoFe2O4–BiFeO3 nanocomposites. Mater. Sci. Eng. B. 121, 255 (2005)

    Article  Google Scholar 

  32. M. Tyagi, M. Kumar, R. Chatterjee, and P. Sharma, Raman scattering spectra, magnetic and ferroelectric properties of BiFeO3-CoFe2O4 nanocomposite thin films structure. Phys B Condens. Matter. 448, 128 (2014)

    Article  CAS  Google Scholar 

  33. H.K. Choi, N.M. Aimon, D.H. Kim, X.Y. Sun, J. Gwyther, I. Manners, and C.A. Ross, Hierarchical templating of a BiFeO3-CoFe2O4 multiferroic nanocomposite by a triblock terpolymer film. ACS Nano 8, 9248 (2014)

    Article  CAS  Google Scholar 

  34. R. Comes, H. Liu, M. Khokhlov, R. Kasica, J. Lu, and S.A. Wolf, Directed self-assembly of epitaxial CoFe2O4-BiFeO3 multiferroic nanocomposites. Nano Lett. 12, 2367 (2012)

    Article  CAS  Google Scholar 

  35. D.K. Mishra and X. Qi, Energy levels and photoluminescence properties of nickel-doped bismuth ferrite. J. Alloys Compd. 504, 27–31 (2010)

    Article  CAS  Google Scholar 

  36. F. Wang, D. Chen, N. Zhang, S. Wang, L. Qin, X. Sun, and Y. Huang, Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance. J. Colloid Interface Sci. 508, 237 (2017)

    Article  CAS  Google Scholar 

  37. K. Biswas, D. De, J. Bandyopadhyay, N. Dutta, S. Rana, P. Sen, S.K. Chakraborty, and P.K. Bandyopadhyay, Enhanced polarization, magnetic response and pronounced antibacterial activity of bismuth ferrite nanorods. Mater. Chem. Phys. 195, 207 (2017)

    Article  CAS  Google Scholar 

  38. S. Ulag, C. Kalkandelen, T. Bedira, G. Erdemird, S.E. Kurucae, F. Dumludagf, C.B. Ustundagg, E. Rayamanh, N. Ekrena, B. Kilica, and O. Gunduza, Fabrication of three-dimensional PCL/BiFeO3 scaffolds for biomedical applications. Mater. Sci. Eng. B. 261, 114660 (2020)

    Article  CAS  Google Scholar 

  39. Z.H. Jaffari, S.M. Lam, J.C. Sin, and H. Zeng, Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite. Mater. Sci. Semicond. Process. 101, 103 (2019)

    Article  CAS  Google Scholar 

  40. A.H. Ashour, A.I. El-Batal, M.I.A. Abdel Maksoud, G.S. El-Sayyad, Sh. Labib, E. Abdeltwb, and M.M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol-gel technique. Particuology 40, 141 (2018)

    Article  CAS  Google Scholar 

  41. R. Ramadan, M.K. Ahmed, and V. Uskokovi, Magnetic, microstructural and photoactivated antibacterial features of nanostructured Co-Zn ferrites of different chemical and phase compositions. J. Alloys Compd. 856, 157013 (2021)

    Article  CAS  Google Scholar 

  42. M.K. Satheeshkumar, E. Ranjith Kumar, Ch. Srinivas, N. Suriyanarayanand, M. Deepty, C.L. Prajapate, T.V. Chandrasekhar Raoe, and D.L. Sastryf, Study of structural, morphological and magnetic properties of Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity. J. Magn. Magn. Mater. 469, 691 (2019)

    Article  CAS  Google Scholar 

  43. R. Sagayaraj, T. Dhineshkumar, A. Prakash, S. Aravazhi, G. Chandrasekaran, D. Jayarajan, and S. Sebastian, Fabrication, microstructure, morphological and magnetic properties of W-type ferrite by co-precipitation method: antibacterial activity. Chem. Phys. Lett. 759, 137944 (2020)

    Article  CAS  Google Scholar 

  44. M. Manonmani, V.P. Senthil, J. Gajendiran, J. Ramana Ramya, N. Sivakumar, V. Jaikumar, S. Gokul Raj, and G. Ramesh Kumar, A study of the structural, magnetic, hemocompatibility and electrochemical properties of BiFeO3 (BFO)/CoFe2O4 (CFO) nanocomposite. J. Mater. Sci. Mater. Electron. 30, 10934 (2019)

    Article  CAS  Google Scholar 

  45. M. Sahni, S. Mukhopadhyay, R.M. Mehra, S. Chauhan, P.C. Sati, M. Kumar, M. Singh, and N. Kumar, Effect of Yb/Co co-dopants on surface chemical bonding states of BiFeO3 nanoparticles with promising photocatalytic performance in dye degradation. J. Phys. Chem. Solids. 152, 109926 (2021)

    Article  CAS  Google Scholar 

  46. H.M. Hashem and M.H. Hamed, Preparation parameters optimization and structure investigation of multiferroic bismuth ferrite. Mater. Chem. Phys. 211, 445 (2018)

    Article  CAS  Google Scholar 

  47. S. Kavitha and M. Kurian, Effect of zirconium doping in the microstructure, magnetic and dielectric properties of cobalt ferrite nanoparticles. J. Alloys Compd. 799, 147 (2019)

    Article  CAS  Google Scholar 

  48. P.R. Vanga, R.V. Mangalaraja, and M. Ashok, Magnetic properties and photocatalytic behavior of Co Co-doped BiFeO3:Er. J. Supercond. Nov. Magn. 31, 89 (2017)

    Article  Google Scholar 

  49. Y. Han, Y. Ma, C. Quan, N. Gao, Q. Zhang, W. Mao, J. Zhang, J. Yang, X. Li, and W. Huang, Substitution-driven structural, optical and magnetic transformation of Mn, Zn doped BiFeO3. Ceram. Int. 41, 2476 (2015)

    Article  CAS  Google Scholar 

  50. V. Kumar and S. Singh, Improved structure stability, optical and magnetic properties of Ca and Ti co-substituted BiFeO3 nanoparticles. Appl. Surf. Sci. 386, 78 (2016)

    Article  CAS  Google Scholar 

  51. Z. Wang, Y. Ma, Y. Zhou, R. Hu, W. Mao, J. Zhang, J. Min, X. Yang, and W.H. Li, Multiferroic- and bandgap-tuning in BiFeO3 nanoparticles via Zn and Y co-doping. J. Mater. Sci. Mater. Electron. 28, 11338 (2017)

    Article  CAS  Google Scholar 

  52. Y.H. Wang and X. Qi, Multiferroic- and bandgap-tuning in BiFeO3 nanoparticles via Zn and Y co-doping. Proc. Eng. 36, 455 (2012)

    Article  CAS  Google Scholar 

  53. G.G. Philip, A. Senthamizhan, S. Natarajan, G. Chandrasekaran, and H.A. Therese, The effect of gadolinium doping on the structural, magnetic and photoluminescence properties of electrospun bismuth ferrite nanofibers. Ceram. Int. 41, 13361 (2015)

    Article  Google Scholar 

  54. S. Gnanam, J. Gajendiran, J. Ramana Ramya, K. Ramachandran, and S. Gokul Raj, Glycine-assisted hydrothermal synthesis of pure and europium doped CeO2 nanoparticles and their structural, optical, photoluminescence, photocatalytic and antibacterial properties. Chem. Phys. Lett. 763, 138217 (2021)

    Article  CAS  Google Scholar 

  55. D. Gheidari, M. Mehrdad, S. Maleki, and S. Hosseini, Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light. Heliyon. 6, e05058 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, Dr. S. Gokul Raj, wishes to thank the DRDO-ARMREB (ARMREB/MAA/2012/141) for providing financial assistance and Vel Tech University for providing a platform to complete this project successfully.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Gajendiran or S. Gokul Raj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajendiran, J., Raj, S.G., Kumar, G.R. et al. Photoluminescence Properties and Antibacterial Activity of BiFeO3 and BiFeO3-CoFe2O4 Composite. J. Electron. Mater. 51, 8–16 (2022). https://doi.org/10.1007/s11664-021-09285-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09285-w

Keywords

Navigation