Skip to main content
Log in

Stress relaxation and thermal evolution of film properties in amorphous carbon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A model for the stress relaxation of amorphous carbon films containing high concentrations of fourfold coordinated carbon is presented. The onset of stress relaxation in these materials occurs following thermal annealing at temperatures as low as 100°C, and near full stress relaxation occurs after annealing at 600°C. The stress relaxation is modeled by a series of first order chemical reactions which lead to a conversion of some fourfold coordinated carbon atoms into threefold coordinated carbon atoms. The distribution of activation energies for this process is derived from the experimental measurements of stress relaxation and is found to range from 1 eV to over 3 eV. Permanent increases in the electrical conductivity of the carbon films are also found following thermal annealing. The electrical conductivity is found to be exponentially proportional to the number of additional threefold atoms which are created upon annealing, with the increase in threefold atom concentration being deduced from the stress relaxation model. This indicates that the increase in electrical conductivity and the stress relaxation originate from the same fourfold to threefold conversion process and that electrical transport through these films is dominated by a hopping conduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. McKenzie, D. Muller and B.A. Pailthorpe, Phys. Rev. Lett. 67, 773 (1991).

    Article  CAS  Google Scholar 

  2. P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.J. Milne and J. Koskinen, Phys. Rev. B 48, 4777 (1993).

    Article  CAS  Google Scholar 

  3. J. Deng and M. Braun, Diamond and Relat. Mater. 5, 478 (1996).

    Article  CAS  Google Scholar 

  4. J.P. Sullivan, T.A. Friedmann, D.R. Tallant, J. Mikkalson, D. Rieger, A.G. Baca and L. J. Martinez-Miranda, submitted to Appl. Phys. Lett.

  5. T.A. Friedmann, K.F. McCarty, J.C. Barbour, M.P. Siegal and D.C. Dibble, Appl. Phys. Lett. 68, 1643 (1996).

    Article  CAS  Google Scholar 

  6. T.A. Friedmann, J.A. Knapp, D.L. Medlin, P.B. Mirkarimi, J.P. Sullivan, D.R. Tallant, R.L. Simpson and J. Mikkalson, to be published.

  7. J.P. Sullivan, P.B. Mirkarimi, K.F. McCarty, T.A. Friedmann, L.J. Martinez-Miranda, N. Missert, M.P. Siegal and M.L. Lovejoy, submitted to Appl. Phys. Lett.

  8. C.B. Collins, F. Davanloo, E.M. Juengerman, W.R. Osborn and D.R. Jander, Appl. Phys. Lett. 54, 216 (1989).

    Article  CAS  Google Scholar 

  9. G.G. Stoney, Proc. R. Soc. London, Ser. A 82, 172 (1909).

    Article  CAS  Google Scholar 

  10. T.A. Friedmann (private communication).

  11. M. Chhowalla, Y. Yin, G.A.J. Amaratunga, D.R. McKenzie and Th. Frauenheim, Appl. Phys. Lett. 69, 2344 (1996).

    Article  CAS  Google Scholar 

  12. A. Witvrouw, Ph.D. Thesis Harvard University, 1992.

  13. T.C.P. Lee, L.H. Sperling and A.V. Tobolsky, J. Appl. Polym. Sci. 10, 1831 (1966).

    Article  CAS  Google Scholar 

  14. S.R. Elliot, Physics of Amorphous Materials (London: Longman, 1990).

    Google Scholar 

  15. CRC Handbook of Chemistry and Physics, ed. D.R. Lide (Boca Raton, FL: CRC Press, 1996).

    Google Scholar 

  16. Amorphous Solids: Low Temperature Properties, ed. W.A. Phillips (Berlin: Springer-Verlag, 1981).

    Google Scholar 

  17. N.A. Marks, D.R. McKenzie, B.A. Pailthorpe, M. Bernasconi and M. Parrinello, Phys. Rev. Lett. 76, 768 (1996).

    Article  CAS  Google Scholar 

  18. P.A. Schultz and E.B. Stechel, submitted to Phys. Rev. B.

  19. C.H. Seager, T.A. Friedmann and D.E. Bliss, Mater. Res. Soc. Proc. 416, (Pittsburgh, PA: Mater. Res. Soc, 1996), p. 145.

    Google Scholar 

  20. J.P. Sullivan and T.A. Friedmann, to be published.

  21. S.M. Sze, The Physics of Semiconductor Devices (New York: Wiley, 1981).

    Google Scholar 

  22. R. Zallen, The Physics of Amorphous Solids (New York: Wiley, 1983).

    Google Scholar 

  23. E. Chason, A.L. Greer, K.F. Kelton, P.S. Pershan, L.B. Sorensen, F. Spaepen and A.H. Weiss, Phys. Rev. B 32, 3399 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, J., Friedmann, T.A. & Baca, A.G. Stress relaxation and thermal evolution of film properties in amorphous carbon. J. Electron. Mater. 26, 1021–1029 (1997). https://doi.org/10.1007/s11664-997-0239-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0239-9

Key words

Navigation