Skip to main content
Log in

Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have shown that threading dislocations can be removed from patterned heteroepitaxial semiconductors by glide to the sidewalls, which is driven by the presence of image forces. In principle, it should be possible to attain highly mismatched heteroepitaxial semiconductors which are completely free from threading dislocations, even though they are not pseudomorphic, by patterned heteroepitaxial processing. There are two basic approaches to patterned heteroepitaxial processing. The first involves selective area growth on a pre-patterned substrate. The second approach involves post-growth patterning followed by annealing. We have developed a quantitative model which predicts that there is a maximum lateral dimension for complete removal of threading dislocations by patterned heteroepitaxy. According to our model, this maximum lateral dimension is proportional to the layer thickness and increases monotonically with the lattice mismatch. For heteroepitaxial materials with greater than 1% lattice mismatch, our model predicts that practical device-sized threading dislocation-free regions may be realized by patterned heteroepitaxial processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Beanland, D.J. Dunstan and P.J. Goodhew, Adv. Phys. 45, 87 (1996).

    Article  CAS  Google Scholar 

  2. R. Fischer, N. Chand, W. Kopp, H. Morkoç, L.P. Erickson and R. Youngman, Appl. Phys. Lett. 47, 397 (1985).

    Article  CAS  Google Scholar 

  3. K. Maeda, M. Sato, A. Kubo and S. Takeuchi, J. Appl. Phys. 54, 161 (1983).

    Article  CAS  Google Scholar 

  4. S. Sakai, T. Soga, M. Takeyasu and M. Umeno, Jpn. J. Appl. Phys. 24, L666 (1985).

    Google Scholar 

  5. T.H. Windhorn and G.M. Metze, Appl. Phys. Lett. 47, 1031 (1985).

    Article  CAS  Google Scholar 

  6. J.P. van der Ziel, R.D. Dupuis and J.C. Bean, Appl. Phys. Lett. 48, 1713 (1986).

    Article  Google Scholar 

  7. H. Shiraiski, R. Yamada, N. Matsui and M. Umeno, Jpn. J. Appl. Phys. 26, L198 (1987).

    Google Scholar 

  8. D.W. Nam, N. Holonyak, K.C. Hsieh, R.W. Kaliski, J.W. Lee, H. Shichijo, J.E. Epler, R.D. Burnham and T.L. Paoli, Appl. Phys. Lett. 51, 39 (1987).

    Article  CAS  Google Scholar 

  9. R.W. Kaliski, N. Holonyak, K.C. Hsieh, D.W. Nam, J.W. Lee, H. Shichijo, R.D. Burnham, J.E. Epler and H.F. Chung, Appl. Phys. Lett. 50, 836 (1987).

    Article  CAS  Google Scholar 

  10. R.D. Dupuis, J.P. van der Ziel, R.A. Logan, J.M. Brown and C.J. Pinzone, Appl. Phys. Lett. 50, 407 (1987).

    Article  CAS  Google Scholar 

  11. J.P. van der Ziel, R.D. Dupuis, R.A. Logan, R.M. Mikulyak, C.J. Pinzone and A. Savage, Appl. Phys. Lett. 50, 454 (1987).

    Article  Google Scholar 

  12. M. Razeghi, M. Defour, F. Omnes, Ph. Maurel and J. Chazelas, Appl. Phys. Lett. 53, 725 (1988).

    Article  CAS  Google Scholar 

  13. J.P. van der Ziel, R.D. Dupuis, R.A. Logan and C.J. Pinzone, Appl. Phys. Lett. 51, 89 (1987).

    Article  Google Scholar 

  14. S.N.G. Chu and Nakahara, Appl. Phys. Lett. 56, 434 (1990).

    Article  CAS  Google Scholar 

  15. E.A. Fitzgerald, P.D. Kirchner, R. Proano, G.D. Pettit, J.M. Woodall and D.G. Ast, Appl. Phys. Lett. 52, 1496 (1988).

    Article  CAS  Google Scholar 

  16. E.A. Fitzgerald and N. Chand, J. Electron. Mater. 20, 839 (1991).

    CAS  Google Scholar 

  17. J.E. Ayers, dissertation, Rensselaer Polytechnic Institute, Troy, New York, (1990).

    Google Scholar 

  18. J.E. Ayers, U. S. Patent Pending (1997).

  19. N.H. Karam, V. Haven, S.M. Vernon, N. El-Masry, E.H. Lingunis and N. Haegal, J. Cryst. Growth 107, 129 (1991).

    Article  CAS  Google Scholar 

  20. A. Ackaert, P. Demeester, L. Buydens, G. Coudenys, P. Van Daele and M. Renaud, J. Cryst. Growth 107, 822 (1991).

    Article  CAS  Google Scholar 

  21. N. Chand and S.N.G. Chu, Appl. Phys. Lett. 58, 74 (1991).

    Article  CAS  Google Scholar 

  22. P. Sheldon, K.M. Jones, M.M. Al-Jassim and B.G. Yacobi, J. Appl. Phys. 63, 5609 (1988).

    Article  CAS  Google Scholar 

  23. M. Tachikawa and M. Yamaguchi, Appl. Phys. Lett. 56, 484 (1990).

    Article  CAS  Google Scholar 

  24. J.E. Ayers, S.K. Ghandhi and L.J. Schowalter, Mater. Res. Soc. Symp. Proc. 209, 661 (Pittsburgh, PA: Mater. Res. Soc., 1991).

    Google Scholar 

  25. J.E. Ayers, L.J. Schowalter and S.K. Ghandhi, J. Cryst. Growth 125, 329 (1992).

    Article  CAS  Google Scholar 

  26. H. Tatsuoka, H. Kuwubara, Y. Nakanishi and H. Fujiyasu, Thin Solid Films 201, 59 (1991).

    Article  CAS  Google Scholar 

  27. K. Durose and H. Tatsuoka, Proc. M.S.M. Conf., Oxford, UK (1993).

  28. J.E. Ayers, J. Appl. Phys. 78, 3726 (1995).

    Article  Google Scholar 

  29. J.S. Speck, M.A. Brewer, G. Beltz, A.E. Romanov and W. Pompe, J. Appl. Phys. 80, 3808 (1996).

    Article  CAS  Google Scholar 

  30. A.E. Romanov, W. Pompe, G.E. Beltz and J.S. Speck, Appl. Phys. Lett. 69, 3342 (1996).

    Article  CAS  Google Scholar 

  31. V. Natarajan (unpublished) and J.E. Ayers, dissertation, Rensselaer Polytechnic Institute, Troy, NY (1990).

    Google Scholar 

  32. C. Muggelberg, dissertation, Humboldt University, Berlin (1992).

    Google Scholar 

  33. J.W. Matthews, A.E. Blakeslee and S. Mader, Thin Solid Films 33, 253 (1976).

    Article  CAS  Google Scholar 

  34. G. H. Olsen, J. Cryst. Growth 31 223 (1975).

    Article  CAS  Google Scholar 

  35. E.A. Fitzgerald, Y.-H. Xie, M.L. Green, D. Brasen, A.R. Kortan, J. Michel, Y.-J. Mii and B.E. Weir, Appl. Phys. Lett. 59, 811 (1991).

    Article  CAS  Google Scholar 

  36. Y.-H. Xie, E.A. Fitzgerald, P.J. Silverman, A.R. Kortan and B.E. Weir, Mater. Sci. Engr. B 14, 332 (1992).

    Article  Google Scholar 

  37. J.C.C. Fan, B.-Y. Tsaur, P. Gale and F.M. Davis, U.S. Patent 5,091,333 (1992).

    Google Scholar 

  38. M. Sugo, H. Mori, Y. Itoh and Y. Sakai, Ext. Abs. Intl. Conf. on Solid State Devices and Materials, 1992 (unpublished).

  39. T. Yamada, M. Tachikawa, T. Sasaki, H. Mori And Y. Kadota, Appl. Phys. Lett. 70, 1614 (1997).

    Article  CAS  Google Scholar 

  40. E.A. Fitzgerald, G.P. Watson, R.E. Proano, D.G. Ast, P.D. Kirchner, G.D. Pettit and J.M. Woodall, J. Appl. Phys. 65, 2220 (1989).

    Article  CAS  Google Scholar 

  41. G.P. Watson, E.A. Fitzgerald, Y.-H. Xie, P.J. Silverman, A.E. White and K.T. Short, Appl. Phys. Lett. 63, 746 (1993).

    Article  CAS  Google Scholar 

  42. G.P. Watson, M.O. Thompson, D.G. Ast, A. Fischer-Colbrie and J. Miller, J. Electron. Mater. 19, 957 (1990).

    CAS  Google Scholar 

  43. D. Hull and D.J. Bacon, Introduction to Dislocations, 3rd. Ed. (New York: Pergamon, 1984).

    Google Scholar 

  44. P. Haasan, Acta Met. 5, 598 (1957).

    Article  Google Scholar 

  45. R. Hull and J.C. Bean, J. Appl. Phys. 66, 5837 (1989).

    Article  CAS  Google Scholar 

  46. Y.H. Lo, Appl. Phys. Lett. 59, 2311 (1991).

    Article  CAS  Google Scholar 

  47. D. Teng and Y.H. Lo, Appl. Phys. Lett. 62, 1687 (1993).

    Article  Google Scholar 

  48. F.E. Ejeckam, Y.H. Lo, S. Subramanian, H.Q. Hou and B.E. Hammons, Appl. Phys. Lett. 70, 1685 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.G., Li, P., Zhao, G. et al. Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls. J. Electron. Mater. 27, 1248–1253 (1998). https://doi.org/10.1007/s11664-998-0078-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-998-0078-3

Key words

Navigation