Skip to main content
Log in

Perimeter governed minority carrier lifetimes in 4H-SiC p+n diodes measured by reverse recovery switching transient analysis

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Minority carrier lifetimes in epitaxial 4H-SiC p+n junction diodes were measured via an analysis of reverse recovery switching characteristics. Behavior of reverse recovery storage time (ts) as a function of initial ON-state forward current (IF) and OFF-state reverse current (IR) followed well-documented trends which have been observed for decades in silicon p+n rectifiers. Average minority carrier (hole) lifetimes (τp) calculated from plots of ts vs IR/IF strongly decreased with decreasing device area. Bulk and perimeter components of average hole lifetimes were separated by plotting 1/τp as a function of device perimeter-to-area ratio (P/A). This plot reveals that perimeter recombination is dominant in these devices, whose areas are all less than 1 mm2. The bulk minority carrier (hole) lifetime extracted from the 1/τp vs P/A plot is approximately 0.7 µs, well above the 60 ns to 300 ns average lifetimes obtained when perimeter recombination effects are ignored in the analysis. Given the fact that there has been little previous investigation of bipolar diode and transistor performance as a function of perimeter-to-area ratio, this work raises the possibility that perimeter recombination may be partly responsible for poor effective minority carrier lifetimes and limited performance obtained in many previous SiC bipolar junction devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakashima, H. Matsunami, S. Yoshida and H. Harima, eds., Silicon Carbide and Related Materials 1995, 142 (Bristol, UK: Institute of Physics, 1996).

    Google Scholar 

  2. G.W. Neudeck, The PN Junction Diode, vol. 2, 2nd. Ed., Modular Series on Solid State Devices, eds. G.W. Neudeck and R.F. Pierret (Reading, MA: Addison-Wesley, 1989).

    Google Scholar 

  3. G.W. Neudeck, The Bipolar Junction Transistor, vol. 3, 2nd. Ed., Modular Series on Solid State Devices, eds. G.W. Neudeck and R.F. Pierret (Reading, MA: Addison-Wesley, 1989).

    Google Scholar 

  4. S. M. Sze, Physics of Semiconductor Devices, 2nd. ed. (New York: Wiley-Interscience, 1981), p. 61.

    Google Scholar 

  5. Y. Wang, W. Xie, J.A. Cooper, Jr., M.R. Melloch and J.W. Palmour, Silicon Carbide and Related Materials 1995, eds. S. Nakashima, H. Matsunami, S. Yoshida and H. Harima, 142, (Bristol, UK: Institute of Physics, 1996), p. 809.

    Google Scholar 

  6. E. Janzen and O. Kordina, Silicon Carbide and Related Materials 1995, eds. S. Nakashima, H. Matsunami, S. Yoshida, and H. Harima, 142, (Bristol, UK: Institute of Physics, 1996), p. 653.

    Google Scholar 

  7. K. Xie, J.H. Zhao, J.R. Flemish, T. Burke, W.R. Buchwald, G. Lorenzo and H. Singh, IEEE Electron Dev. Lett. 17, 142 (1996).

    Article  Google Scholar 

  8. O. Kordina, J.P. Bergman, A. Henry, E. Janzen, S. Savage, J. Andre, L.P. Ramberg, U. Lindefelt, W. Hermansson and K. Bergman, Appl. Phys. Lett. 67, 1561 (1995).

    Article  CAS  Google Scholar 

  9. Cree Research, Inc., 2810 Meridian Parkway, Suite 176, Durham, NC 27713.

  10. D.J. Larkin, P.G. Neudeck, J.A. Powell and L.G. Matus, Appl. Phys. Lett. 65, 1659 (1994).

    Article  CAS  Google Scholar 

  11. R.H. Kingston, Proc. IRE 42, 829 (1954).

    Article  Google Scholar 

  12. R.F. Pierret, Advanced Semiconductor Fundamentals, vol. 6, Modular Series on Solid State Devices, eds. G.W. Neudeck and R.F. Pierret (Reading, MA: Addison-Wesley, 1987).

    Google Scholar 

  13. C.H. Henry, R.A. Logan and F.R. Merrit, J. Appl. Phys. 49, 3530 (1978).

    Article  CAS  Google Scholar 

  14. P.E. Dodd, T.B. Stellwag, M.R. Melloch and M.S. Lundstrom, IEEE Trans. Electron Dev. 38, 1253 (1991).

    Article  Google Scholar 

  15. R. Raghunathan and B.J. Baliga, presented at Electronic Materials Conf., Santa Barbara, CA, June 1996, p. 18.

  16. D.K. Schroder, Advanced MOS Devices, vol. 7, Modular Series on Solid State Devices, eds. G.W. Neudeck and R.F. Pierret (Reading, MA: Addison Wesley, 1987), p. 77.

    Google Scholar 

  17. J.E. Carnes, W.F. Kosonocky and E.G. Ramberg, IEEE Trans. Electron Dev. 19, 798 (1972).

    Google Scholar 

  18. J. Krausse, Solid-St. Electron. 17, 427 (1974).

    Article  CAS  Google Scholar 

  19. O. Kordina, J.P. Bergman, C. Hallin and E. Janzen, Appl. Phys. Lett. 69, 679 (1996).

    Article  CAS  Google Scholar 

  20. Y. Wang, J.A. Cooper, Jr., M.R. Melloch, S.T. Sheppard, J.W. Palmour and L.A. Lipkin, J. Electron. Mater. 25, 899 (1996).

    Article  CAS  Google Scholar 

  21. C.J. Sandroff, R.N. Nottenburg, J.C. Bischoff and R. Bhat, Appl. Phys. Lett. 51, 439 (1987).

    Article  Google Scholar 

  22. P.G. Neudeck D.J. Larkin, J.E. Starr, J.A. Powell, C.S. Salupo and L.G. Matus, presented at Workshop on SiC Materials and Devices, Charlottesville, VA (1992), p. 39.

  23. O. Kordina, J.P. Bergman, A. Henry and E. Janzen, Appl. Phys. Lett. 66, 189 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neudeck, P.G. Perimeter governed minority carrier lifetimes in 4H-SiC p+n diodes measured by reverse recovery switching transient analysis. J. Electron. Mater. 27, 317–323 (1998). https://doi.org/10.1007/s11664-998-0408-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-998-0408-5

Key words

Navigation