Skip to main content
Log in

The effects of short-range order and natural microinhomogeneities on the FIR optical properties of CdxHg1−xTe

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Possible types and formation mechanisms for the correlated cation distributions in CdxHg1−xTe alloys, including short-range order (SRO) in the mixed sublattice and composition microinhomogeneities (MI), are discussed. The impact of SRO (ordering or clustering) on phonons is studied in the framework of the coherent potential approximation. It is shown that two peaks of the spectral density of phonon states with \(\overrightarrow q \)=0 (HgTe-like and CdTe-like modes) move toward and away from their positions in end member crystals due to clustering and ordering, respectively. Short-range ordering also activates (HgTe-like and CdTe-like states of the Brillouin zone edge, but this effect is small. The effects of composition MI on the dielectric response due to phonons are considered and an effective dielectric function is calculated using the modified Maxwell-Garnett approach. It is shown that separate inclusions of different composition produce extra modes of the Fröhlich type in FIR spectra of CdxHg1−x Te. It is argued that this is a more plausible explanation of the experimenatally observed ‘cluster’ mode (133 cm−1 in Raman and 135 cm−1 in FIR spectra) than one which previously appeared in the literature and involves atomic ordering in the mixed sublattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sher, M.A. Berding, M. van Schilfgaarde and A.B. Chen, Semicond. Sci. Technol. 6, C59 (1991).

    Google Scholar 

  2. A.-B. Chen and A. Sher, Phys. Rev. B. 32, 3695 (1985).

    Article  CAS  Google Scholar 

  3. R.D.S. Yadava and A.V.R. Warrier, Solid State Comm. 78, 449 (1991).

    Article  CAS  Google Scholar 

  4. A. Sher, M. van Schilfgaarde, A.-B. Chen and W. Chen, Phys. Rev. B 36, 4279 (1987).

    Article  Google Scholar 

  5. V.P. Vasil’ev, M.N. Mamontov and V.V. Morozova, Ext. Abstr. IV All-Union Conf. on Thermodynamics and Material Science of Semiconductors, Moscow, 1989, part I, p. 97.

  6. K.T. Chen, H.C. Liu, R. Fang, T.C. Yu and R.F. Brebrick, Solid State Comm. 81, 1025 (1992).

    Article  CAS  Google Scholar 

  7. V.T. Bublik, S.S. Gorelik and M.D. Kapustina, Izvestiya AN SSSR ser. Neorganicheskie Materialy 7, 1507 (1971).

    CAS  Google Scholar 

  8. D. Zamir, K. Beshah, P. Becla, P.A. Wolff, R.G. Griffin, D. Zax, S. Vega and N. Yellin, J. Vac. Sci. Technol. A 6, 2612 (1988).

    Article  CAS  Google Scholar 

  9. S.P. Kozyrev, V.N. Pyrkov and L.K. Vodopyanov, Sov. Phys. Sol. Stat. 34, 2372 (1992); 34, 3695 (1992).

    CAS  Google Scholar 

  10. S.P. Kozyrev, V.N. Pyrkov and L.K. Vodopyanov, Sov. Phys. Sol. Stat 37, 1293 (1995).

    CAS  Google Scholar 

  11. A. Compaan, R.C. Bowman and D.E. Cooper, Appl. Phys. Lett. 56, 1055 (1990).

    Article  CAS  Google Scholar 

  12. D.B. Zax, D. Zamir and S. Vega, Phys. Rev. B 47, 6304 (1993).

    Article  CAS  Google Scholar 

  13. P.M. Amirtharaj, N.K. Dhar, J. Baars and H. Seelewind, Semicond. Sci. Technol. 5, S68 (1990).

    Google Scholar 

  14. Farajami Shayesteh, T. Dumelow, T.J. Parker, T.I. Benyushis, S.N. Ershov and M.I. Vasilevskiy, Intl. J. Infr. Mm. Waves 16, 763 (1995).

    Article  CAS  Google Scholar 

  15. S.K. Kang, T. Dumelow, T.J. Parker, R.J. York, S.R.P. Smith, S.N. Ershov and M.I. Vasilevskiy, Digest of 18th Intl. Conf. Infr. Mill. Waves, Colchester, UK, 1993, vol. 2104 (SPIE, 1993), p. 224.

  16. M.I. Vasilevskiy, O.V. Baranova, Z.F. Krasil’nik, D.A. Rakhlin and S.V. Stroganova, J. Cryst. Growth 159, 1108 (1996).

    Article  CAS  Google Scholar 

  17. I. Hill, J. Appl. Phys. 67, 4270 (1990).

    Article  CAS  Google Scholar 

  18. H.W. Verleur and A.S. Barker, Phys. Rev. 149, 7150 (1966).

    Article  Google Scholar 

  19. D.W. Taylor, Optical Properties of Mixed Crystals, ed. R.J. Elliott, (Amsterdam: North Holland, 2988), p. 35.

  20. Z.F. Wu and J.D. Dow, Phys. Rev. B 36, 7625 (1987).

    Article  Google Scholar 

  21. J.M. Ziman, Models of Disorder, (Cambridge, U.K.: Cambridge University Press, 1979).

    Google Scholar 

  22. S. Baroni, S. de Gironcoli and P. Gianozzi, Phys. Rev. Lett. 65, 84 (1990).

    Article  CAS  Google Scholar 

  23. M.I. Vasilevskiy, O.V. Baranova and S.V. Stroganova, Computer Physics Comm. 9, 1997 (1996).

    Google Scholar 

  24. O.V. Baranova, M.I. Vasilevskiy and S.V. Stroganova, Izvestiya RAN ser. Fizicheskaya 54, 101 (1994).

    Google Scholar 

  25. K. Zanio and T. Masopust, J. Electron. Mater. 15, 103 (1986).

    CAS  Google Scholar 

  26. L.A. Bovina and V.I. Stafeev, The Physics of II-VI Compounds, ed. A.N. Georgobiani, Moscow, Nauka, 1986, p. 246.

    Google Scholar 

  27. M.F.S. Tang and D.A. Stevenson, J. Vac. Sci. Technol. A 6, 2650 (1988).

    Article  CAS  Google Scholar 

  28. R. Sporken, S. Sivananthan, J. Reno and J.P. Faurie, Phys. Rev. B 38, 1351 (1988).

    Article  CAS  Google Scholar 

  29. N.N. Berchenko et al., Sov. Tech. Phys. Lett. 18 (22), 76 (1992).

    CAS  Google Scholar 

  30. M.C. Chen, S.G. Parker and D.F. Weinrauh, J. Appl. Phys. 58, 3150 (1985).

    Article  CAS  Google Scholar 

  31. J.G. Tian, C.P. Zhang and G.Y. Zhang, Appl. Phys. Lett. 59, 2591 (1991).

    Article  CAS  Google Scholar 

  32. B.A. Aronzon, A.V. Kopylov and E.V. Meilikhov, Sov. Phys. Semiconductors 23, 471 (1989).

    CAS  Google Scholar 

  33. A.I. Belogorokhov and L.I. Belogorokhova, Sov. Phys. Sol. State 36, 2230 (1994).

    CAS  Google Scholar 

  34. K. Binder, Rep. Prog. Phys. 50, 783 (1987).

    Article  CAS  Google Scholar 

  35. B. Dunweg and D.P. Landau, Phys. Rev. B 48, 14182 (1993).

    Article  CAS  Google Scholar 

  36. R.A. Mayanovich, W.-F. Pong and B.A. Bunker, Phys. Rev. B 42, 11174 (1990).

    Article  Google Scholar 

  37. A.G. Khachaturyan, Theory of Phase Transitions and Structure of Solid Solutions, Moscow, Nauka, (1974).

    Google Scholar 

  38. E. Belas et al., J. Cryst. Growth 138, 940 (1994).

    Article  CAS  Google Scholar 

  39. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Sol. 33, 149 (1970).

    Google Scholar 

  40. S.K. Maksimov, K.S. Maksimov and E.A. Il’ichev, JETP Lett. 63, 412 (1996).

    Article  CAS  Google Scholar 

  41. G.S. Chen and G.B. Stringfellow, Appl. Phys. Lett. 59, 324 (1991); 59, 2258 (1991).

    Article  CAS  Google Scholar 

  42. G.B. Stringfellow, J. Cryst. Growth 98, 108 (1989).

    Article  CAS  Google Scholar 

  43. M. Ishimura and A. Asaki, J. Appl. Phys. 60, 3850 (1986).

    Article  Google Scholar 

  44. I.P. Ipatova, V.G. Malyshkin and V.A. Shchukin, J. Appl. Phys. 74, 7198 (1993).

    Article  CAS  Google Scholar 

  45. J.C. Brice, P. Capper and C.L. Jones, J. Cryst. Growth 57, 1149 (1986).

    Google Scholar 

  46. M.I. Vasilevskiy and E.V. Anda, Semicond. Sci. Technol. 10, 157 (1995).

    Article  CAS  Google Scholar 

  47. A.V. Vedyaev, Theor. Math. Phys. 31, 532 (1977).

    Article  Google Scholar 

  48. B.D. Rajput and D.A. Browne, Phys. Rev. B 53, 9048 (1996).

    Article  Google Scholar 

  49. S. Baroni, P. Gianozzi and E. Molinari, Phys. Rev. B 41, 3870 (1990).

    Article  CAS  Google Scholar 

  50. R.G. Barrera, G. Monsivais, W.L. Mochan and E.V. Anda, Phys. Rev. B 39, 9998 (1989).

    Article  Google Scholar 

  51. M.I. Vasilevskiy and E.V. Anda, Phys. Rev. B 54, 5844 (1996).

    Article  CAS  Google Scholar 

  52. S.P. Kozyrev, L.K. Vodopyanov and R. Tribolet, Solid State Comm. 45, 383 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilevskiy, M.I., Belogorokhov, A.I. & Gomes, M.J.M. The effects of short-range order and natural microinhomogeneities on the FIR optical properties of CdxHg1−xTe. J. Electron. Mater. 28, 654–661 (1999). https://doi.org/10.1007/s11664-999-0049-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-999-0049-3

Key words

Navigation