Skip to main content
Log in

Comparison of X-ray diffraction methods for determination of the critical layer thickness for dislocation multiplication

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a comparison of x-ray diffraction methods for the determination of the critical layer thickness for dislocation multiplication in mismatched heteroepitaxy. The conventional x-ray diffraction method for determination of the critical layer thickness is based on the direct observation of the lattice relaxation in measurements of strain (the “strain method”). An indirect method is based on the observation of the x-ray rocking curve broadening by the threading dislocations, which are introduced concurrently with misfit dislocations (the “full width at half maximum (FWHM) method”). For this study, we have applied both methods to ZnSe grown on GaAs (001) by metalorganic vapor phase epitaxy (MOVPE). We have compared the resolution of the two x-ray diffraction methods both theoretically and experimentally for the case of 004 reflections using Cukα1 radiation. Theoretically, we have shown that in this case the FWHM method is 2.6 times more sensitive to relaxation than the strain method. This conclusion is supported by our experiments, in which we determined a critical layer thickness value of 140 nm by the FWHM method, compared to 210 nm as determined by the strain method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.H. Van der Merwe, J. Appl. Phys. 34, 123 (1962).

    Article  Google Scholar 

  2. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    Article  CAS  Google Scholar 

  3. R. People and J.C. Bean, Appl. Phys. Lett. 47, 322 (1985), and Appl. Phys. Lett. 49, 229 (1986).

    Article  CAS  Google Scholar 

  4. D.C. Houghton, M. Davies and M. Dion, Appl. Phys. Lett. 64, 505 (1994).

    Article  CAS  Google Scholar 

  5. I.J. Fritz, S.T. Picraux, L.R. Dawson and T.J. Drummond, Appl. Phys. Lett. 46, 967 (1985).

    Article  CAS  Google Scholar 

  6. J. Petruzzello, B.L. Greenberg, D.A. Cammack and R. Dalby, J. Appl. Phys. 63, 2299 (1988).

    Article  CAS  Google Scholar 

  7. A. Mazuelas, L. Gonzàlez, F.A. Ponce, L. Tapfer and F. Briones, J. Cryst. Growth 131, 465 (1993).

    Article  CAS  Google Scholar 

  8. T. Yao, Jpn. J. Appl. Phys. 25, L544 (1986).

    Google Scholar 

  9. T. Reisinger, M.J. Kastner, K. Wolf, E. Steinkirchner, W. Häckl, H. Stanzl and W. Gebhardt, Mater. Sci. Forum 182–184, 147 (1995).

    Article  Google Scholar 

  10. C.B. O’Donnell, G. Lacey, G. Horsburgh, A.G. Cullis, C.R. Whitehouse, P.J. Parbrook, W. Meredith, I. Galbraith, P. Mock, K.A. Prior and B.C. Cavenett, J. Cryst. Growth 184/185, 95 (1998).

    Article  CAS  Google Scholar 

  11. Y.C. Chen and P.K. Bhattacharya, J. Appl. Phys. 73, 7389 (1993).

    Article  CAS  Google Scholar 

  12. R. Beanland, D.J. Dunstan and P.J. Goodhew, Advances in Physics 45, 87 (1996).

    Article  CAS  Google Scholar 

  13. K. Kamigaki, H. Sakashita, H. Kato, M. Nakayama, N. Sano and H. Terauchi, Appl. Phys. Lett. 49, 1071 (1986).

    Article  CAS  Google Scholar 

  14. P.J. Orders and B.F. Usher, Appl. Phys. Lett. 50, 980 (1987).

    Article  CAS  Google Scholar 

  15. X.G. Zhang, G. Zhao, D.W. Parent, J.E. Ayers and F.C. Jain, X-ray Rocking Curve Analysis of Tetragonally-Distorted Ternary Semiconductors on Mismatched (001) Substrates, (unpublished).

  16. F. Scherrer, Nachr. Göttinger Ges. 98 (1918).

  17. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, 1978), p. 102.

  18. W.J. Bartels, J. Hornstra and D.J.W. Lobeek, Acta Cryst. A42, 539 (1986).

    CAS  Google Scholar 

  19. C.R. Wie, T.A. Tombrello and T. Vreeland, Jr., J. Appl. Phys. 59, 3743 (1986).

    Article  CAS  Google Scholar 

  20. L. Tapfer and K. Ploog, Phys. Rev. B 40, 9802 (1989).

    Article  CAS  Google Scholar 

  21. M.A.G. Halliwell, M.H. Lyons and M.J. Hill, J. Cryst. Growth 68, 523 (1984).

    Article  CAS  Google Scholar 

  22. J.E. Ayers, J. Appl. Phys. 78, 3724 (1995).

    Article  CAS  Google Scholar 

  23. P.D. Healey, K. Bao, M. Gokhale, J.E. Ayers and F.C. Jain, Acta Cryst. A51, 498 (1995).

    CAS  Google Scholar 

  24. P. Gay, P.B. Hirsch and A. Kelly, Acta Met. 1, 315 (1953).

    Article  CAS  Google Scholar 

  25. M.J. Hordon and B.L. Averbach, Acta Met. 9, 237 (1961).

    Article  CAS  Google Scholar 

  26. J.E. Ayers, J. Cryst. Growth 135, 71 (1994).

    Article  CAS  Google Scholar 

  27. V.M. Kaganer, R. Kohler, M. Schmidbauer, R. Opitz and B. Jenichen, Phys. Rev. B 55, 1793 (1997).

    Article  CAS  Google Scholar 

  28. J.E. Ayers, L.J. Schowalter and S.K. Ghandhi, J. Cryst. Growth 125, 329 (1992).

    Article  CAS  Google Scholar 

  29. W. Stutius, J. Cryst. Growth 59, 1 (1982).

    Article  CAS  Google Scholar 

  30. W.J. Bartels, Philips Tech. Rev. 41, 183 (1983).

    Google Scholar 

  31. P.D. Healey and J.E. Ayers, Acta Cryst. A52, 245 (1996).

    CAS  Google Scholar 

  32. S. Takeuchi, K. Suzaki, K. Maeeda and H. Iwanaga, Philos. Mag. A50, 171 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.G., Li, P., Parent, D.W. et al. Comparison of X-ray diffraction methods for determination of the critical layer thickness for dislocation multiplication. J. Electron. Mater. 28, 553–558 (1999). https://doi.org/10.1007/s11664-999-0111-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-999-0111-1

Key words

Navigation