Skip to main content
Log in

Study of the Performance of Stainless Steel A-TIG Welds

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The purpose of the present work was to investigate the effect of oxide fluxes on weld morphology, arc voltage, mechanical properties, angular distortion and hot cracking susceptibility obtained with TIG welding, which applied to the welding of 5 mm thick austenitic stainless steel plates. A novel variant of the autogenous TIG welding process, oxide powders (Al2O3, Cr2O3, TiO2, SiO2 and CaO) was applied on a type 304 stainless steel through a thin layer of the flux to produce a bead on plate welds. The experimental results indicated that the increase in the penetration is significant with the use of Cr2O3, TiO2, and SiO2. A-TIG welding can increase the weld depth to bead-width ratio, and tends to reduce the angular distortion of the weldment. It was also found that A-TIG welding can increase the retained delta-ferrite content of stainless steel 304 welds and, in consequence, the hot-cracking susceptibility of as-welded is reduced. Physically constricting the plasma column and reducing the anode spot are the possible mechanism for the effect of certain flux on A-TIG penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Huang H.Y., Shyu S.W., Tseng K.H., Chou C.P. (2006) Effects of the Process Parameters on Austenitic Stainless Steel by TIG-flux Welding. J. Mater. Sci. Technol. 22(3):367-373

    CAS  Google Scholar 

  2. Howse D.S., Lucas W. (2000) Investigation into Arc Constriction by Active Fluxes for Tungsten Inert Gas Welding. Sci. Technol. Weld. Joining 5(3):189-193

    Article  CAS  Google Scholar 

  3. Tanaka M., Shimizu T., Terasaki H., Ushio M., Koshi-ishi F., Yang C.-L. (2000) Effects of Activating Flux on Arc Phenomena in Gas Tungsten Arc Welding. Sci. Technol Weld. Joining 5(6):397-402

    Article  CAS  Google Scholar 

  4. Kuo M., Sun Z., Pan D. (2001) Laser Welding with Activating Flux. Sci. Technol Weld. Joining 6(1):17-22

    Article  Google Scholar 

  5. Paskell T., Lundin C., Castner H. (1997) GTAW Flux Increases Weld Joint Penetration. Weld. J. 76(4):57-62

    CAS  Google Scholar 

  6. Yang C.L., Lin S.B., Liu F.Y., Lin W., Zhang Q.T. (2003) Research on the Mechanism of Penetration Increase by Flux in A-TIG Welding. J. Mater. Sci. Technol. 19:225-227

    Article  CAS  Google Scholar 

  7. Modenesi P.J., Apolinário E.R., Pereira I.M. (2000) TIG Welding with Single-component Fluxes. J. Mater. Process. Technol. 99(1):260-265

    Article  Google Scholar 

  8. Huang H.Y., Shyu S.W., Tseng K.H., Chou C.P. (2005) Evaluation of TIG-Flux Welding on the Characteristics of Stainless Steel. Sci. Technol. Weld. Joining 10(5):566-573

    Article  CAS  Google Scholar 

  9. H.Y. Huang, S.W. Shyu, K.H. Tseng, and C.P. Chou, Effect of A-TIG Welding on the Morphology of Stainless Steel Welds, Proceedings of 7th International Conference on Trends in Welding Research, ASM International, 2005

  10. Ogawa T., Tsunetomi E. (1982) Hot Cracking Susceptibility of Austenitic Stainless Steel. Weld. J. 61(3):82-93

    Google Scholar 

  11. Brook J.A. (1974) Effect of Alloy Modifications on HAZ Cracking of A-286 Stainless Steel. Weld. J. 53(11):517-523

    Google Scholar 

  12. Lundin C.D., Turner P.W. (1970) Effect of the Hot Cracking of Uranium Weld Metal-Part I. Weld. J. 49(12):579-587

    Google Scholar 

  13. Tseng K.H., Chou C.P. (2001) Effect of Pulsed Gas Tungsten Arc Welding on Angular Distortion in Austenitic Stainless Steel Weldments. Sci. Technol. Weld. Joining 6(3):149-153

    Article  CAS  Google Scholar 

  14. Tseng K.H., Chou C.P. (2002) The Effect of Pulsed GTA Welding on the Residual Stress of a Stainless Steel Weldment. J. Mater. Process. Technol. 123:346-353

    Article  CAS  Google Scholar 

  15. Pavlovsky V.I., Masubuchi K. (1994) Research in the U.S.S.R. on Residual Stresses and Distortion in Welded Structures. Weld. Res. Counc. Bull. 338:44-48

    Google Scholar 

  16. Tseng K.H., Chou C.P. (2002) Effect of Nitrogen Addition to Shielding Gas on Residual Stress of Stainless Steel Weldments. Sci. Technol. Weld. Joining 7(1):57-62

    Article  CAS  Google Scholar 

  17. Chen M.H., Chou C.P. (1999) Effect of Thermal Cycles on Ferrite Content of Austenitic Stainless Steel. Sci. Technol. Weld. Joining 4(1):58-62

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Shyu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shyu, S.W., Huang, H.Y., Tseng, K.H. et al. Study of the Performance of Stainless Steel A-TIG Welds. J. of Materi Eng and Perform 17, 193–201 (2008). https://doi.org/10.1007/s11665-007-9139-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9139-7

Keywords

Navigation