Skip to main content
Log in

Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.K. Palani and N. Murugan, Development of Mathematical Models for Prediction of Weld Bead Geometry in Cladding by Flux Cored Arc Welding, Int. J. Adv. Manuf. Technol., 2006, 30(7–8), p 669–676

    Article  Google Scholar 

  2. E. Karadeniz, U. Ozsarac, and C. Yildiz, The Effect of Process Parameters on Penetration in Gas Metal Arc Welding Processes, Mater. Des., 2007, 28(2), p 649–656

    Article  Google Scholar 

  3. K. Ishizaki, Interfacial Tension Theory of the Phenomenon of Arc Welding-Mechanism of Penetration, Proceedings of Symposium on Physics of Arc Welding, The Institute of Welding, London, 1962, p 195–209

  4. D.S. Nagesh and G.L. Datta, Prediction of Weld Bead Geometry and Penetration in Shielded Metal-Arc Welding Using Artificial Neural Networks, J. Mater. Process. Technol., 2002, 123(2), p 303–312

    Article  Google Scholar 

  5. G. Powell and G. Herfurth, Charpy V-Notch Properties and Microstructures of Narrow Gap Ferritic Welds of a Quenched and Tempered Steel Plate, Metall. Mater. Trans. A, 1998, 29(11), p 2775–2784

    Article  Google Scholar 

  6. V.S.R. Murti, P.D. Srinivas, G.H.D. Banadeki, and K.S. Raju, Effect of Heat Input on the Metallurgical Properties of HSLA Steel in Multi-Pass MIG Welding, J. Mater. Process. Technol., 1993, 37(1–4), p 723–729

    Article  Google Scholar 

  7. M. Eroglu, M. Aksoy, and N. Orhan, Effect of Coarse Initial Grain Size on Microstructure and Mechanical Properties of Weld Metal and HAZ of a Low Carbon Steel, Mat. Sci. Eng. A, 1999, 269(1), p 59–66

    Article  Google Scholar 

  8. A.S. Shahi, S. Pandey, and J.S. Gill, Effect of Auxiliary Preheating of Filler Wire on Dilution in Gas Metal Arc Stainless Steel Surfacing Using RSM, Surf. Eng., 2007, 23(5), p 384–390

    Article  CAS  Google Scholar 

  9. Y.C. Lin and K.H. Lee, Effect of Preheating on the Residual Stress in Type 304 Stainless Steel Weldment, J. Mater. Process. Technol., 1997, 63(1–3), p 797–801

    Article  Google Scholar 

  10. T. Mohandas, G. Madhusudan Reddy, and B. Satish Kumar, Heat-Affected Zone Softening in High-Strength Low-Alloy Steels, J. Mater. Process. Technol., 1999, 88(1), p 284–294

    Article  Google Scholar 

  11. T. Nakamura and K. Hiraoka, Ultranarrow GMAW Process with Newly Developed Wire Melting Control System, Sci. Technol. Weld. Join., 2001, 6(6), p 355–362

    Google Scholar 

  12. H. Tong, T. Ueyama, S. Harada, and M. Ushio, Quality and Productivity Improvement in Aluminium Alloy Thin Sheet Welding Using Alternating Current Pulsed Metal Inert Gas Welding System, Sci. Technol. Weld. Join., 2001, 6(4), p 203–208

    Article  CAS  Google Scholar 

  13. Z. Smati, Automatic Pulsed MIG Welding, Mater. Construct., 1986, 18, p 38r–44r

    CAS  Google Scholar 

  14. K. Stanzel, Pulsed GMAW Cuts Cycle Time by 600 Percent, Weld. Des. Fabr., 2001, April, p 85–87

  15. J. Tippins, Box Beam Fabrication Using the Pulsed MIG Process, Mater. Construct. Br. Weld. J., 1970, December, p 547–550

  16. R.C. Harvey, Gas Metal Arc Welding Fume Generation Using Pulsed Current, Weld. J., 1995, 74(11), p 59s–68s

    Google Scholar 

  17. M. Thamodharan, H.P. Beck, and A. Wolf, Steady and Pulsed Direct Current Welding With a Single Converter, Weld. J., 1999, 78(3), p 75s–79s

    Google Scholar 

  18. A. Raja, Flux Core Stelliting by Pulsed MAG Welding, WRI, J., 1998, 19(3), p 98–101

    Google Scholar 

  19. I.E. French and M.R. Bosworth, A Comparison of Pulsed and Conventional Welding With Basic Flux Cored and Metal Cored Welding Wires, Weld. J., 1995, 74(6), p 197s–205s

    Google Scholar 

  20. M. Jilong and R.L. Apps, New MIG Process Results from Metal Transfer Mode Control, Weld. Met. Fabr., 1983, 51, p 168–175

    Google Scholar 

  21. B. Bernard, Effects of Shielding Gas in Pulsed MIG Welding, Join. Mater., 1989, June, p 277–280

  22. J.A. Lambert, Assessment of the Pulsed GMA Technique for Tube Attachment Welding, Weld. J., 1989, 68(2), p 35–43

    CAS  Google Scholar 

  23. S. Ueguri, K. Hara, and H. Komura, Study of Metal Transfer in Pulsed GMA Welding, Weld. J., 1985, 64(8), p 242s–250s

    Google Scholar 

  24. M. Amin, Pulsed Current Parameters for Arc Stability and Controlled Metal Transfer in Arc Welding, Met. Construct., 1983, 15, p 272–278

    Google Scholar 

  25. P. Boughton and J.A. Lucey, The Use of Pulsed Current to Control Metal Transfer in Welding, Br. Weld. J., 1965, 4, p 159–166

    Google Scholar 

  26. C.J. Allum, Welding Technology Data: Pulsed MIG Welding Weld, Met. Fabr., 1985, 53, p 24–30

    Google Scholar 

  27. Y.S. Kim, “Metal Transfer in Gas Metal Arc Welding,” PhD Thesis MIT, Cambridge, MA, 1989.

  28. P. Mike and Kemppi, Power Sources for Pulsed MIG Welding, Join. Mater., 1989, June, p 268–271

  29. S. Subramaniam, D.R. White, J.E. Jones, and D.W. Lyons, Droplet Transfer in Pulsed Gas Metal Arc Welding Of Aluminum, Weld. J., 1998, 77(11), p 458s–463s

    Google Scholar 

  30. S. Rajasekaran, Method of Selecting The Most Suitable Combination of Parameters in Pulsed Current Gas Metal Arc Welding Process, Proceedings of International Conference on Advances in Mechanical and Industrial Engineering, Roorkee, 1997, p 1115–1122.

  31. M. Amin, Synergic Pulse MIG Welding, Met. Construct., 1981, 6, p 349–353

    Google Scholar 

  32. C.J. Allum, MIG Welding—Time for a Reassessment, Met. Construct., 1983, June, p 347–353

  33. S. Rajasekaran, S.D. Kulkarni, U.D. Mallya, and R.C. Chaturvedi, Droplet Detachment and Plate Fusion Characteristics in Pulsed Current Gas Metal Arc Welding, Weld. J., 1998, 77(6), p 254s–269s

    Google Scholar 

  34. S. Rajasekaran, Surface Topography of Pulsed Current Gas Metal Arc Clads, Surf. Eng., 2000, 16(6), p 495–500

    Article  CAS  Google Scholar 

  35. M. Suban and J. Tusek, Methods for the Determination of Arc Stability, J. Mater. Process. Technol., 2003, 143–144, p 430–437

    Article  Google Scholar 

  36. N. Jacobsen, Monopulse Investigation of Drop Detachment in Pulsed Gas Metal Arc Welding, J. Phys. D, 1992, 25, p 783–797

    Google Scholar 

  37. P. Boughton and T.M. Matani, Two Years of Pulsed Arc Welding, Weld. Met. Fabricat., 1967, October, p 410–420

  38. M.R. Bosworth, Effective Heat Input in Pulsed Gas Metal Arc Welding With Solid Wire Electrodes, Weld. J., 1991, 70(5), p 111s–117s

    Google Scholar 

  39. P.K. Ghosh, L. Dorn, M. Hubner, and V.K. Goyal, Arc Characteristics and Behaviour of Metal Transfer in Pulsed Current GMA Welding of Aluminium Alloy, J. Mater. Process. Technol., 2007, 194(1–3), p 163–175

    Article  CAS  Google Scholar 

  40. Y.M. Zhang, E. Liguo, and B.L. Walcott, Robust Control of Pulsed Gas Metal Arc Welding, J. Dyn. Syst. Meas. Control. ASME, 2000, 124, p 1–9

    Google Scholar 

  41. H.C. De Miranda, A. Scotti, and V.A. Ferraresi, Identification and Control of Metal Transfer in Pulsed GMAW Using Optical Sensor, Sci. Technol. Weld. Join., 2007, 12(3), p 249–257

    Article  Google Scholar 

  42. P. Praveen, P.K.D.V. Yarlagadda, and M.J. Kang, Advancements in Pulse Gas Metal Arc Welding, J. Mater. Process. Technol., 2005, 164–165, p 1113–1119

    Article  Google Scholar 

  43. P.K. Palani and N. Murugan, Modeling and Simulation of Wire Feed Rate For Steady Current and Pulsed Current Gas Metal Arc Welding Using 317L Flux Cored Wire, Int. J. Adv. Manuf. Technol., 2007, 34(11–12), p 1111–1119

    Article  Google Scholar 

  44. S. Subramaniam, D.R. White, J.E. Jones, and D.W. Lyons, Experimental Approach to Selection of Pulsing Parameters in Pulsed GMAW, AWS, Weld. J., 1999, 78(5), p 166s–172s

    Google Scholar 

  45. J.F. Collard, Adaptive Pulsed GMAW Control: The Digital Pulse System, Weld. J., 1998, 77(11), p 35s–38s

    Google Scholar 

  46. P.K. Ghosh, P.C. Gupta, and V.K. Goyal, Stainless Steel Cladding of Structural Steel Plate Using the Pulsed Current GMAW Process, Weld. J., 1998, 77(7), p 307s–314s

    Google Scholar 

  47. J.C. Needham, Pulse Controlled Consumable Electrode Welding Arcs—General Principles and Operating Characteristics, Br. Weld. J., 1965, 4, p 191–197

    Google Scholar 

  48. P.K. Ghosh, S.R. Gupta, and H.S. Randhawa, Characteristics of a Pulsed-Current, Vertical-Up Gas Metal Arc Weld in Steel, Metall. Mater. Trans. A, 2000, 31A, p 2247–2259

    Article  CAS  Google Scholar 

  49. P.K. Ghosh and P.C. Gupta, Use of Pulse Current MIG Welding Improves the Weld Characteristics of Al–Zn–Mg Alloy, Indian Weld. J., 1996, April, p 24–32

  50. Y.S. Kim and T.W. Eagar, Metal Transfer in Pulsed Current Gas Metal Arc Welding, Weld. J., 1993, 72(7), p 279s–287s

    Google Scholar 

  51. L.O. Vilarinho and A. Scotti, An Alternate Algorithm for Synergic Pulsed GMAW of Aluminum, Australas. Weld. J., 2000, 45, p 36–44

    Google Scholar 

  52. W.G. Essers and V. Gompal, Arc control with Pulsed GMA Welding, Weld. J., 1984, 64(6), p 26s–32s

    Google Scholar 

  53. S. Rajasekaran, Weld Bead Characteristics in Pulsed GMA Welding of Al–Mg Alloys, Weld. J., 1999, 78(12), p 397s–407s

    Google Scholar 

  54. P.K. Palani and N. Murugan, Selection of Parameters of Pulsed Current Gas Metal Arc Welding (Review), J. Mater. Process. Technol., 2006, 172, p 1–10

    Article  Google Scholar 

  55. A. Joseph, D. Farson, D. Harwig, and R. Richardson, Influence of GMAW-P Current Waveforms on Heat Input and Weld Bead Shape, Sci. Technol. Weld. Join., 2005, 10(3), p 311–318

    Article  Google Scholar 

  56. J.C. Needham and A.W. Carter, Material Transfer Characteristics with Pulsed Current, Br. Weld. J., 1965, 5, p 229–241

    Google Scholar 

  57. C.S. Wu, M.A. Chen, and Y.F. Lu, Effect of Current Waveforms on Metal Transfer in Pulsed Gas Metal Arc Welding, Meas. Sci. Technol., 2005, 16(12), p 2459–2465

    Article  CAS  Google Scholar 

  58. I.S. Kim, A. Basu, and E. Siores, Mathematical Models for Control of Weld Bead Penetration in the GMAW Process, Int. J. Adv. Manuf. Technol., 1996, 12(6), p 393–401

    Article  Google Scholar 

  59. C.J. Allum and L. Quintino, Control of Fusion Characteristics in Pulsed Current MIG Welding, Meter. Construct., 1985, April, p 242r–245r

  60. M. Nouri, A. Abdollah-Zadehy, and F. Malek, Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding, J. Mater. Sci. Technol., 2007, 23(6), p 817–822

    CAS  Google Scholar 

  61. H. Ian and N. John, Pulsed MIG/MAG Welding, Join. Mater., 1989, June, p 264–281

  62. V.K. Goyal, P.K. Ghosh, and J.S. Saini, Analytical Studies on Thermal Behaviour and Geometry of Weld Pool in Pulsed Current Gas Metal Arc Welding, J. Mater. Process. Technol., 2008, 209(3), p 1318–1336

    Article  Google Scholar 

  63. P.K. Ghosh, S.R. Gupta, P.C. Gupta, and R. Rathi, Fatigue Characteristics of Pulsed MIG Welded Al-Zn-Mg Alloy, J. Mater. Sci., 1991, 26(22), p 6161–6170

    Article  CAS  Google Scholar 

  64. T. Ishida, Stainless Steel Modification on a Mild Steel by Pulsed-Current Arc, J. Mater. Sci. Lett., 1992, 11(2), p 83–85

    Article  CAS  Google Scholar 

  65. K.H. Tseng and C.P. Chou, The Effect of Pulsed GTA Welding on the Residual Stress of a Stainless Steel Weldment, J. Mater. Process. Technol., 2002, 123(3), p 346–353

    Article  CAS  Google Scholar 

  66. P.K. Ghosh and B.K. Rai, Characteristics of Pulsed Current Bead on Plate Deposit in Flux Cored GMAW Process, ISIJ Int., 1996, 36(8), p 1036–1045

    Article  CAS  Google Scholar 

  67. H.S. Randhawa, P.K. Ghosh, and S.R. Gupta, Geometrical Characteristics of Pulsed Current Positional GMA Weld, ISIJ Int., 1998, 38(3), p 276–284

    Article  CAS  Google Scholar 

  68. H.S. Randhawa, P.K. Ghosh, and S.R. Gupta, Some Basic Aspects of Geometrical Characteristics of Pulsed Current Vertical-up GMA Weld, ISIJ Int., 2000, 40(1), p 71–76

    Article  CAS  Google Scholar 

  69. P.K. Ghosh, S.G. Kulkarni, M. Kumar, and H.K. Dhiman, Pulsed Current GMAW for Superior Weld Quality of Austenitic Stainless Steel Sheet, ISIJ Int., 2007, 47(1), p 138–145

    Article  CAS  Google Scholar 

  70. V.K. Goyal, P.K. Ghosh, and J.S. Saini, Influence of Pulse Parameters on Characteristics of Bead-on-Plate Weld Deposits of Aluminum and Its Alloy in the Pulsed Gas Metal Arc Welding Process, Metall. Mater. Trans. A, 2008, 39(13), p 3260–3275

    Article  Google Scholar 

  71. R. Kumar, U. Dilthey, D.K. Dwivedi, S.P. Sharma, and P.K. Ghosh, Welding of Thin Sheet of Al Alloy (6082) by Using Vario Wire DC P-GMAW, Int. J. Adv. Manufact. Technol., 2009, 42(1–2), p 102–117

    Article  Google Scholar 

  72. R. Kumar, U. Dilthey, D.K. Dwivedi, and P.K. Ghosh, Thin Sheet Welding of Al 6082 Alloy by AC Pulse-GMA and AC Wave Pulse-GMA Welding, Mater. Des., 2009, 30(2), p 306–313

    Article  CAS  Google Scholar 

  73. P.K. Ghosh and A.K. Ghosh, Control of Residual Stresses Affecting Fatigue Life of Pulsed Current Gas-Metal-Arc Weld of High-Strength Aluminium Alloy, Metall. Mater. Trans. A, 2004, 35(8), p 2439–2444

    Article  Google Scholar 

  74. C.L.M. Silva and A. Scotti, The Influence of Double Pulse on Porosity Formation in Aluminum GMAW, J. Mater. Process. Technol., 2006, 171(3), p 366–372

    Article  Google Scholar 

  75. M. Sireesha, V. Shankar, S.K. Albert, and S. Sundaresan, Microstructural Features of Dissimilar Welds Between 316LN Austenitic Stainless Steel and Alloy 800, Mat. Sci. Eng. A, 2000, 292(1), p 74–82

    Article  Google Scholar 

  76. A. Gural, B. Bostan, and A.T. Ozdemir, Heat Treatment in Two Phase Region and its Effect on Microstructure and Mechanical Strength after Welding of a Low Carbon Steel, Mater. Des., 2007, 28(3), p 897–903

    Article  Google Scholar 

  77. G. Lothongkum, E. Viyanit, and P. Bhandhubanyong, Study on the Effects of Pulsed TIG Welding Parameters on Delta-Ferrite Content, Shape Factor and Bead Quality in Orbital Welding of AISI, 316L Stainless Steel Plate, J. Mater. Process. Technol., 2001, 110(2), p 233–238

    Article  CAS  Google Scholar 

  78. S.H. Wang, P.K. Chiu, J.R. Yang, and J. Fang, Gamma (γ) Phase Transformation in Pulsed GTAW Weld Metal of Duplex Stainless Steel, Mater. Sci. Eng., 2006, 420(1–2), p 26–33

    Google Scholar 

  79. V. Balasubramanian, V. Ravisankar, and G. Madhusudhan Reddy, Effect of Pulsed Current Welding on Fatigue Behaviour of High Strength Aluminium Alloy Joints, Mater. Des., 2008, 29(2), p 492–500

    Article  CAS  Google Scholar 

  80. V. Balasubramanian, V. Ravisankar, and G. Madhusudhan Reddy, Effect of Pulsed Current Welding on Mechanical Properties of High Strength Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2008, 36(3–4), p 254–262

    Article  Google Scholar 

  81. V. Balasubramanian, V. Ravisankar, and G. Madhusudhan Reddy, Effect of Pulsed Current and Post Weld Aging Treatment on Tensile Properties of Argon Arc Welded High Strength Aluminium Alloy, Mater. Sci. Eng., 2007, 459(1–2), p 19–34

    Google Scholar 

  82. G. Padmanabham, M. Schaper, S. Pandey, and E. Simmchen, Tensile and Fracture Behavior of Pulsed Gas Metal Arc-Welded Al-Cu-Li, Weld. J., 2007, 86(6), p 147s–160s

    Google Scholar 

  83. S. Kou, Welding Metallurgy, 2nd ed., Wiley Interscience Publication, 2002, p 145–430.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjya K. Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, K., Pal, S.K. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review. J. of Materi Eng and Perform 20, 918–931 (2011). https://doi.org/10.1007/s11665-010-9717-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9717-y

Keywords

Navigation