Skip to main content
Log in

Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this investigation was to evaluate the microstructural change after laser welding and its effect on the tensile properties and strain hardening behavior of DP600 and DP980 dual-phase steels. Laser welding led to the formation of martensite and significant hardness rise in the fusion zone because of the fast cooling, but the presence of a soft zone in the heat-affected zone was caused by partial vanishing and tempering of the pre-existing martensite. The extent of softening was much larger in the DP980-welded joints than in the DP600-welded joints. Despite the reduction in ductility, the ultimate tensile strength (UTS) remained almost unchanged, and the yield strength (YS) indeed increased stemming from the appearance of yield point phenomena after welding in the DP600 steel. The DP980-welded joints showed lower YS and UTS than the base metal owing to the appearance of severe soft zone. The YS, UTS, and strain hardening exponent increased slightly with increasing strain rate. While the base metals had multi-stage strain hardening, the welded joints showed only stage III hardening. All the welded joints failed in the soft zone, and the fracture surfaces exhibited characteristic dimple fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Bead-on-plate means a butt weld with full penetration on the blanks of uniform thickness.

References

  1. S.R. Mediratta, V. Ramaswamy, V. Singh, and P. Rama Rao, Microstructure-Mechanical Property Correlations in Dual Phase Steels, Trans. Ind. Inst. Met., 1985, 38, p 350–372

    CAS  Google Scholar 

  2. M. Sarwar, E. Ahmad, N. Hussain, B. Ahmad, and T. Manzoor, Crack Path Morphology in Dual-Phase Steel, J. Mater. Eng. Perform., 2006, 15, p 352–354

    Article  CAS  Google Scholar 

  3. M. Xia, E. Biro, Z. Tian, and Y.N. Zhou, Effects of Heat Input and Martensite on HAZ Softening in Laser Welding of Dual Phase Steels, ISIJ Int., 2008, 48, p 809–814

    Article  CAS  Google Scholar 

  4. D.L. Chen, Z.G. Wang, X.X. Jiang, S.H. Al, and C.H. Shih, Dependence of Near-Threshold Fatigue Crack Growth on Microstructure and Environment in Dual-Phase Steels, Mater. Sci. Eng. A, 1989, 108, p 141–151

    Article  Google Scholar 

  5. M. Sarwar and R. Priestner, Fatigue Crack Propagation Behavior in Dual-Phase Steel, J. Mater. Eng. Perform., 1999, 8, p 245–251

    Article  CAS  Google Scholar 

  6. R.G. Davies, Influence of Silicon and Phosphorus on the Mechanical Properties of Both Ferrite and Dual-Phase Steels, Metall. Trans. A, 1979, 10, p 113–118

    Article  Google Scholar 

  7. T.S. Byun and I.S. Kim, Tensile Properties and Inhomogeneous Deformation of Ferrite-Martensite Dual-Phase Steels, J. Mater. Sci., 1993, 28, p 2923–2932

    Article  CAS  Google Scholar 

  8. N.D. Beynon, S. Oliver, T.B. Jones, and G. Fourlaris, Tensile and Work Hardening Properties of Low Carbon Dual Phase Strip Steels at High Strain Rates, Mater. Sci. Technol., 2005, 21, p 771–778

    Article  CAS  Google Scholar 

  9. M. Sarwar and R. Priestner, Influence of Ferrite-Martensite Microstructural Morphology on Tensile Properties of Dual-Phase Steel, J. Mater. Sci., 1996, 31, p 2091–2095

    Article  CAS  Google Scholar 

  10. H. Kumar, P. Ganesh, R. Kaul, B.T. Rao, P. Tiwari, R. Brajpuriya, S.M. Chaudhari, and A.K. Nath, Laser Welding of 3 mm Thick Laser-Cut AISI, 304 Stainless Steel Sheet, J. Mater. Eng. Perform., 2006, 15, p 23–31

    Article  CAS  Google Scholar 

  11. S.K. Samanta, S.K. Mitra, and T.K. Pal, Microstructure and Oxidation Characteristics of Laser and GTAW Weldments in Austenitic Stainless Steels, J. Mater. Eng. Perform., 2008, 17, p 908–914

    Article  CAS  Google Scholar 

  12. C. Maletta, A. Falvo, F. Furgiuele, G. Barbieri, and M. Brandizzi, Fracture Behaviour of Nickel-Titanium Laser Welded Joints, J. Mater. Eng. Perform., 2009, 18, p 569–574

    Article  CAS  Google Scholar 

  13. M. Marya and G.R. Edwards, Factors Controlling the Magnesium Weld Morphology in Deep Penetration Welding by a CO2 Laser, J. Mater. Eng. Perform., 2001, 10, p 435–443

    Article  CAS  Google Scholar 

  14. H. Tao, W. Tong, L.G. Hector, Jr., and P.D. Zavattieri, Uniaxial Tensile and Simple Shear Behavior of Resistance Spot-Welded Dual-Phase Steel Joints, J. Mater. Eng. Perform., 2008, 17, p 517–534

    Article  CAS  Google Scholar 

  15. N. Sreenivasan, M. Xia, S. Lawson, and Y. Zhou, Effect of Laser Welding on Formability of DP980 Steel, J. Eng. Mater. Technol., 2008, 130, p 041004–041012

    Article  Google Scholar 

  16. M. Xia, N. Sreenivasan, S. Lawson, Y. Zhou, and Z. Tian, A Comparative Study of Formability Of Diode Laser Welds in DP980 and HSLA Steels, J. Eng. Mater. Technol. Trans. ASME, 2007, 129, p 446–452

    Article  CAS  Google Scholar 

  17. A. Bag, K.K. Ray, and E.S. Dwarakadasa, Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels, Metall. Mater. Trans. A, 1999, 30, p 1193–1202

    Article  Google Scholar 

  18. E. Ahmad, T. Manzoor, K.L. Ali, and J.I. Akhter, Effect of Microvoid Formation on the Tensile Properties of Dual-Phase Steel, J. Mater. Eng. Perform., 2000, 9, p 306–310

    Article  CAS  Google Scholar 

  19. H. Chen and G. Cheng, Effect of Martensite Strength on the Tensile Strength of Dual Phase Steels, J. Mater. Sci., 1989, 24, p 1991–1994

    Article  CAS  Google Scholar 

  20. D. Das and P.P. Chattopadhyay, Influence of Martensite Morphology on the Work-Hardening Behavior of High Strength Ferrite-Martensite Dual-Phase Steel, J. Mater. Sci., 2009, 44, p 2957–2965

    Article  CAS  Google Scholar 

  21. M. Erdogan, The Effect of New Ferrite Content on the Tensile Fracture Behaviour of Dual Phase Steels, J. Mater. Sci., 2002, 37, p 3623–3630

    Article  CAS  Google Scholar 

  22. M.R. Akbarpour and A. Ekrami, Effect of Temperature on Flow and Work Hardening Behavior of High Bainite Dual Phase (HBDP) Steels, Mater. Sci. Eng. A, 2008, 475, p 293–298

    Article  Google Scholar 

  23. M.S. Nagorka, G. Krauss, and D.K. Matlock, Effect of Microstructure and Strain Rate on the Stage III, Strain Hardening and Ductility of Dual-Phase Steels, Mater. Sci. Eng., 1987, 94, p 183–193

    Article  CAS  Google Scholar 

  24. F.H. Samuel, Effect of Strain Rate and Microstructure on the Work Hardening of a Cr-Mo-Si Steel, Mater. Sci. Eng., 1987, 92, p l5–l8

    Article  CAS  Google Scholar 

  25. J.H. Hollomon, Tensile Deformation, Am. Inst. Min. Metall. Eng. Trans. Iron Steel Div, 1945, 162, p 268–289

    Google Scholar 

  26. B. Jaoul, Etude de Plasticite et Application oux Meatux, J. Mech. Phys. Solid., 1957, 5, p 95–114

    Article  Google Scholar 

  27. C. Crussard, Relationship Between Exact Form of Tensile Curves of Metals and Accompanying Changes in Their Structure, Rev. Metall., 1953, 50, p 697–710

    CAS  Google Scholar 

  28. P. Ludwik, Elements of Technical Mechanics, Springer, Berlin, 1909

    Google Scholar 

  29. H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solid., 1952, 1, p 1–18

    Article  Google Scholar 

  30. S.N. Monteiro and R. Reed-Hill, On the double-n behaviour of iron, Metall. Mater. Trans. B, 1971, 2, p 2947–2948

    Article  CAS  Google Scholar 

  31. L.F. Ramos, D.K. Matlock, and G. Krauss, On the Deformation Behavior of Dual-Phase Steels, Metall. Trans. A, 1979, 10, p 259–261

    Article  Google Scholar 

  32. F.H. Samuel, Tensile Stress-Strain Analysis of Dual-Phase Structures in a Mn-Cr-Si Steel, Mater. Sci. Eng., 1987, 92, p l1–l4

    Article  CAS  Google Scholar 

  33. B.K. Jha, R. Avtar, V. Sagar Dwivedi, and V. Ramaswamy, Applicability of Modified Crussard-Jaoul Analysis on the Deformation Behaviour of Dual-Phase Steels, J. Mater. Sci. Lett., 1987, 6, p 891–893

    Article  CAS  Google Scholar 

  34. J. Lian, Z. Jiang, and J. Liu, Theoretical Model for the Tensile Work Hardening Behaviour of Dual-Phase Steel, Mater. Sci. Eng. A, 1991, 147, p 55–65

    Article  Google Scholar 

  35. M.S. Xia, M.L. Kuntz, Z.L. Tian, and Y. Zhou, Failure Study on Laser Welds of Dual Phase Steel in Formability Testing, Sci. Technol. Weld. Join., 2008, 13, p 378–387

    CAS  Google Scholar 

  36. N. Farabi, D.L. Chen, J. Li, Y. Zhou, and S.J. Dong, Microstructure and Mechanical Properties of Laser Welded DP600 Steel Joints, Mater. Sci. Eng. A, 2010, 527, p 1215–1222

    Article  Google Scholar 

  37. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin, The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties and Work Hardening Behavior of Ferrite-Martensite Dual Phase Steel Sheets, Mater. Sci. Eng. A, 2009, 518, p 1–6

    Article  Google Scholar 

  38. G.E. Dieter, Yield Point Phenomenon, Mechanical Metallurgy, SI, Metric Edition, McGraw-Hill Book Co., London, 1988, p 197–201

    Google Scholar 

  39. W.D. Callister, Jr., Plastic Deformation, Material Science and Engineering—An Introduction, 7th ed., Wiley, New York, 2007, p 143–144

    Google Scholar 

  40. C.-Y. Kang, T.-K. Han, B.-K. Lee, and J.-K. Kim, Characteristics of Nd:YAG Laser Welded 600 MPa Grade TRIP and DP Steels, Mater. Sci. Forum, 2007, 539–543, p 3967–3972

    Article  Google Scholar 

  41. M.P. Miles, J. Pew, T.W. Nelson, and M. Li, Comparison of Formability of Friction Stir Welded and Laser Welded Dual Phase 590 Steel Sheets, Sci. Technol. Weld. Join., 2006, 11, p 384–388

    Article  CAS  Google Scholar 

  42. H. Huh, S. Kim, J. Song, and J. Lim, Dynamic Tensile Characteristics of TRIP-Type and DP-Type Steel Sheets for an Auto-Body, Int. J. Mech. Sci., 2008, 50, p 918–931

    Article  Google Scholar 

  43. U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48, p 171–273

    Article  CAS  Google Scholar 

  44. J. Cuddy and M. Nabil Bassim, Study of Dislocation Cell Structures from Uniaxial Deformation of AISI, 4340 Steel, Mater. Sci. Eng. A, 1989, 113, p 421–429

    Article  Google Scholar 

  45. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy, Scr. Mater., 2007, 57, p 1004–1007

    Article  CAS  Google Scholar 

  46. W.S. Lee, C. Lin, and B. Chen, Tensile Properties and Microstructural Aspects of 304L Stainless Steel Weldments as a Function of Strain Rate and Temperature, Proc. Inst. Mech. Eng. C, 2005, 219, p 439–451

    Article  CAS  Google Scholar 

  47. S. Kim, Y. Im, S. Lee, H. Lee, Y.J. Oh, and J.H. Hong, Effects of Alloying Elements on Mechanical and Fracture Properties of Base Metals and Simulated Heat-Affected Zones of SA 508 Steels, Metall. Mater. Trans. A, 2001, 32, p 903–911

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), and Initiative for Automotive Innovation (Ontario Research Fund—Research Excellence) for providing financial support. N. F. thanks Ryerson School of Graduate Studies (SGS) for his SGS scholarship. D. L. C. is also grateful for the financial support by the Premier’s Research Excellence Award (PREA), Canada Foundation for Innovation (CFI), and Ryerson Research Chair (RRC) program. The authors would also like to thank J. Li (University of Waterloo) for providing the welded joints. and Messrs. A. Machin, Q. Li, J. Amankrah, D. Ostrom, and R. Churaman (Ryerson University) for their assistance in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farabi, N., Chen, D.L. & Zhou, Y. Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints. J. of Materi Eng and Perform 21, 222–230 (2012). https://doi.org/10.1007/s11665-011-9865-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-9865-8

Keywords

Navigation