Skip to main content

Advertisement

Log in

Second- and Third-Order Elastic Constants of Filaments of HexTow® IM7 Carbon Fiber

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Single filaments of HexTow® IM7-12K carbon fiber were subjected to tensile measurements on a device which applies a known stress σ, and measures the resulting strain ε, and the change in resistivity Δρ. Young’s modulus E, the resistivity ρ, the piezoresistivity Δρ/ρε, and the nonlinearity in the stress-strain relation δ, were determined to be 264.1 ± 16.0 GPa, 1.5 ± 0.1 × 10−3 Ω cm, 1.3 ± 0.1, and −4.96 ± 0.23, respectively. The values obtained for Young’s modulus and the resistivity of the fiber are in reasonable agreement with the values reported by the manufacturer. To the best of our knowledge, this is the first report of a measurement of a third-order elastic constant of a single filament of HexTow® IM7-12K. Given the high elastic strains attainable in these fibers and the negative value of δ, the usual calculation of E from a linear fit to the stress-strain data leads to an incorrect higher value of E. According to the accepted thermodynamic definition of the elastic constants, one must use the initial slope of the stress-strain curve to evaluate E. We also observed that the glue used to secure the fiber has an influence on the apparent modulus of the fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Cheng, W. Chen, and T. Weerasooriya, Mechanical Properties of kevlar® KM2 Single Fiber, J. Eng. Mater. Technol., 2005, 127, p 197–203

    Article  Google Scholar 

  2. K. Brugger, Thermodynamic Definition of Higher Order Elastic Coefficients, Phys. Rev., 1964, 133, p A1611–A1612

    Article  Google Scholar 

  3. I.J. Fritz, Third-Order Elastic Constants for Materials with Transversely Isotropic Symmetry, J. Appl. Phys., 1977, 48, p 812–814

    Article  Google Scholar 

  4. G.J. Curtis, J.M. Milne, and W.N. Reynolds, Non-hookean Behaviour of Strong Carbon Fibres, Nature, 1968, 220, p 1024–1025

    Article  Google Scholar 

  5. C.P. Beetz, Jr., Strain-Induced Stiffening of Carbon Fibres, Fibre Sci. Technol., 1982, 16, p 219–229

    Article  Google Scholar 

  6. I.M. Kowalski, Characterizing the Tensile Stress-Strain Nonlinearity of Polyacrylonitrile-Based Carbon Fibers, Composite Materials: Testing and Design, American Society for Testing and Materials, Philadelphia, 1988, p 205–216

  7. Y. Hiki, Higher Order Elastic Constants of Solids, Ann. Rev. Mater. Sci., 1981, 11, p 51–73

    Article  Google Scholar 

  8. F.D. Murnaghan, Finite Deformation of an Elastic Solid, Dover, New York, 1967, p 117

    Google Scholar 

  9. B.E. Powell and M.J. Skove, Combinations of Third-Order Elastic Constants of Lead, J. Appl. Phys., 1980, 51, p 3433–3434

    Article  Google Scholar 

  10. M.W. Riley and M.J. Skove, High-Order Elastic of Copper and Nickel Whiskers, Phys. Rev. B, 1973, 8, p 467–474

    Article  Google Scholar 

  11. A.G. Comas, L. Manosa, A. Planes, and M. Morin, Anharmonicity of Cu-Based Shape-Memory Alloys in the Vicinity of Their Martensitic Transition, Phys. Rev. B, 1999, 59, p 246–250

    Article  Google Scholar 

  12. A. Gupta and I.R. Harrison, New Aspects in the Oxidative Stabilization of PAN-Based Carbon Fibers: II, Carbon, 1997, 35, p 809–818

    Article  Google Scholar 

  13. M. Guigon, A. Oberlin, and G. Desarmot, Microtexture and Structure of High Tensile Strength PAN-Based Carbon Fibers, Fibre Sci. Technol., 1984, 20, p 55–72

    Article  Google Scholar 

  14. T.H. Ko, Influence of Continuous Stabilization on the Physical Properties and Microstructure of PAN-Based Carbon Fibers, J. Appl. Polym. Sci., 1991, 42, p 1949–1957

    Article  Google Scholar 

  15. M.C. Paiva, C.A. Bernardo, and M. Nardin, Mechanical, Surface and Interfacial Characterization of Pitch and PAN-Based Carbon Fibers, Carbon, 2000, 38, p 1323–1337

    Article  Google Scholar 

  16. A. Voet, J.C. Morawski, and J.B. Donnet, Dynamic Mechanical Properties of Carbon Fibers, Carbon, 1975, 13, p 465–468

    Article  Google Scholar 

  17. E.H. Bogardus, Third-Order Elastic Constants of Ge, MgO, and Fused SiO2, J. Appl. Phys., 1965, 36, p 2504–2513

    Article  Google Scholar 

  18. W.H. Prosser and R.E. Green, Jr., Characterization of the Nonlinear Elastic Properties of Graphite/Epoxy Composites Using Ultrasound, J. Reinf. Plast. Comput., 1990, 9, p 162–173

    Article  Google Scholar 

  19. R.E. Smith, Ultrasonic Elastic Constants of Carbon Fibers and Their Composites, J. Appl. Phys., 1972, 43, p 2555–2561

    Article  Google Scholar 

  20. D. Segur, Y. Guillet, and B. Audoin, Picosecond Ultrasonics on a Single Micron Carbon Fiber, J. Phys., 2011, 278, p 012020-1–012020-4

    Google Scholar 

  21. B.E. Powell and M.J. Skove, A Combination of Third-Order Elastic Constants of Aluminum, J. Appl. Phys., 1982, 53, p 764–765

    Article  Google Scholar 

  22. B.E. Powell and M.J. Skove, Combinations of Third-Order Elastic Constants of Zinc and Cadmium, J. Appl. Phys., 1973, 44, p 666–667

    Article  Google Scholar 

  23. B.E. Powell and M.J. Skove, Combinations of Fourth-Order Elastic Constants of Fused Quartz, J. Appl. Phys., 1970, 41, p 4913–4917

    Article  Google Scholar 

  24. B.E. Powell and M.J. Skove, Measurement of Higher-Order Elastic Constants Using Finite Deformations, Phys. Rev., 1968, 174, p 977–983

    Article  Google Scholar 

  25. C. Cattani, J.J. Rushchitsky, and S.V. Sinchilo, Physical Constants for One Type of Nonlinearly Elastic Fibrous Micro- and Nanocomposites with Hard and Soft Nonlinearities, Int. Appl. Mech., 2005, 41, p 1368–1377

    Article  Google Scholar 

  26. N.K. Naik and V. Madhavan, Twisted Impregnated Yarns: Elastic Properties, J. Strain Anal., 2000, 35, p 83–91

    Article  Google Scholar 

  27. M. Hlavacek, A Continuum Theory for Fibre Reinforced Composites, Int. J. Solid Struct., 1975, 11, p 199–211

    Article  Google Scholar 

  28. C.T. Sun, J.D. Achenbach, and G. Herrmann, Continuum Theory for a Laminated Medium, J. Appl. Mech., 1968, 35, p 467–475

    Article  Google Scholar 

  29. S.K. Datta, H.M. Ledbetter, and R.D. Kriz, Calculated Elastic Constants of Composites Containing Anisotropic Fibers, Int. J. Solid Struct., 1984, 20, p 429–438

    Article  Google Scholar 

  30. W.R. Thissell, A.K. Zurek, and F. Addessio, Accurate Estimation of the Elastic Properties of Porous Fibers, Eleventh International Conference on Composite Materials, Vol 5, 1997, p 571–584

  31. M.J. Skove, T.M. Tritt, A.C. Ehrlich, and H.S. Davis, Device for Simultaneously Measuring Stress, Strain and Resistance in “whiskerlike” Materials in the Temperature Range 1.5 K < T < 360 K, Rev. Sci. Instrum., 1991, 62, p 1010–1014

    Article  Google Scholar 

  32. H. Qian, A. Bismarck, E.S. Greenhalgh, and M.S.P. Shaffer, Carbon Nanotube Grafted Carbon Fibres: A Study of Wetting and Fibre Fragmentation, Compos. A, 2010, 41, p 1107–1114

    Article  Google Scholar 

  33. M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, and H.A. Goldberg: Graphite Fibers and Filaments, Vol 5 of Springer Series in Materials Science, Springer, Berlin, 1988, p 138

  34. P. Morgan, Carbon Fibers and Their Composites, Taylor & Francis Group, Boca Raton, FL, 2005, p 800

    Book  Google Scholar 

  35. Y. Wang, L. Zhang, L. Cheng, H. Mei, and J. Ma, Characterization of Tensile Behavior of a Two-Dimensional Woven Carbon/Silicon Carbide Composite Fabricated by Chemical Vapor Deposition, Mat. Sci. Eng. A, 2008, 497, p 295–300

    Article  Google Scholar 

  36. C. Lee, X. Wei, Q. Li, R. Carpick, J.W. Kysar, and J. Hone, Elastic and Frictional Properties of Graphene, Phys. Status Solidi B, 2009, 246, p 2562–2567

    Article  Google Scholar 

  37. B. Fultz, Vibrational Thermodynamics of Materials, Prog. Mater. Sci., 2009, 55, p 247–352

    Article  Google Scholar 

  38. S. Blazewicz, B. Patalita, and P. Touzain, Study of Piezoresistance Effect in Carbon Fibers, Carbon, 1997, 35, p 1613–1618

    Article  Google Scholar 

  39. C.N. Owston, Electrical Properties of Single Carbon Fibres, J. Phys. D, 1970, 3, p 1615–1626

    Article  Google Scholar 

  40. D.W. McKee, Carbon and Graphite Science, Annu. Rev. Mater. Sci., 1973, 3, p 195–231

    Article  Google Scholar 

  41. M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M.S. Dresselhaus, Vapor-Grown Carbon Fibers (VGCFs): Basic Properties and Their Battery Applications, Carbon, 2001, 39, p 1287–1297

    Article  Google Scholar 

  42. P.C. Conor and C.N. Owston, Electrical Resistance of Single Carbon Fibres, Nature, 1969, 223, p 1146–1147

    Article  Google Scholar 

  43. Y. Nishi, T. Toriyama, K. Oguri, A. Tonegawa, and K. Takayama, High Fracture Resistance of Carbon Fiber Treated by Electron Beam Irradiation, J. Mater. Res., 2001, 16, p 1632–1635

    Article  Google Scholar 

  44. W. Ruland, The Relationship Between Preferred Orientation and Young’s Modulus of Carbon Fibers, Appl. Polym. Symp., 1969, 9, p 293–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. Skove or A. M. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, L., Hitchcock, D., Behlow, H. et al. Second- and Third-Order Elastic Constants of Filaments of HexTow® IM7 Carbon Fiber. J. of Materi Eng and Perform 23, 685–692 (2014). https://doi.org/10.1007/s11665-013-0826-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0826-2

Keywords

Navigation