Skip to main content
Log in

Effect of Carbon Nanotube Dispersion on Mechanical Properties of Aluminum-Silicon Alloy Matrix Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study has been carried out to reinforce the commonly believed fact that the dispersion of carbon nanotubes in a composite has a profound effect on the properties of the composite. In this study, ball milling was carried out using two different parameters to obtain distinctly different degrees of dispersion of carbon nanotubes (4 wt.%) in Al-9 wt.% Si powders. Composite disks, 80 mm in diameter, having good and bad dispersions of carbon nanotubes were obtained by hot pressing. Optical micrographs and Raman spectroscopy images showed the presence of larger carbon nanotube clusters in the bad dispersion sample. Transmission electron microscopy images confirmed the presence of large clusters in the bad dispersion sample, while the good dispersion sample showed individual carbon nanotubes in the Al matrix. Nanoindentation results indicated a 41% increase in the hardness and a 27% increase in the elastic-to-plastic work ratio, while compression tests indicated a 185% increase in compression yield strength and a 109% increase in fracture strength with improvement in carbon nanotube’s dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites: A Review, Int. Mater. Rev., 2010, 55, p 41–64

    Article  Google Scholar 

  2. A. Agarwal, S.R. Bakshi, and D. Lahiri, Carbon Nanotubes: Reinforced Metal Matrix Composites, CRC Press, Boca Raton, 2011

    Google Scholar 

  3. S. Rawal, Metal-Matrix Composites for Space Applications, J. Metals, 2001, 53(4), p 14–17

    Google Scholar 

  4. D.B. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540

    Article  Google Scholar 

  5. B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, and H.D. Espinosa, Measurements of Near-Ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-Induced Crosslinking Improvements, Nat. Nanotechnol., 2008, 3, p 626–631

    Article  Google Scholar 

  6. S. Berber, Y.J. Kwon, and D. Tomanek, Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett., 2000, 84, p 4613–4616

    Article  Google Scholar 

  7. H. Jiang, B. Liu, Y. Huang, and K.C. Hwang, Thermal Expansion of Single Wall Carbon Nanotubes, J. Eng. Mater. Technol., 2004, 126, p 265–270

    Article  Google Scholar 

  8. A. Esawi and K. Morsi, Dispersion of Carbon Nanotubes (CNTs) in Aluminum Powder, Composites A, 2007, 38, p 646–650

    Article  Google Scholar 

  9. L. Wang, H. Choi, J.M. Myoung, and W. Lee, Mechanical Alloying of Multi-Walled Carbon Nanotubes and Aluminium Powders for the Preparation of Carbon/Metal Composites, Carbon, 2009, 47, p 3427–3433

    Article  Google Scholar 

  10. A.M.K. Esawi and M.A. El Borady, Carbon Nanotube-Reinforced Aluminium Strips, Compos. Sci. Technol., 2008, 68, p 486–492

    Article  Google Scholar 

  11. T. Kuzumaki, K. Miyazawa, K. Ichinose, and K. Ito, Processing of Carbon Nanotube Reinforced Aluminum Composite, J. Mater. Res., 1998, 13, p 2445–2449

    Article  Google Scholar 

  12. H. Fukuda, K. Kondoh, J. Umeda, and B. Fugetsu, Aging Behavior of the Matrix of Aluminum-Magnesium-Silicon Alloy Including Carbon Nanotubes, Mater. Lett., 2011, 65, p 1723–1725

    Article  Google Scholar 

  13. R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni, Strengthening in Carbon Nanotube/Aluminium (CNT/Al) Composites, Scr. Mater., 2005, 53, p 1159–1163

    Article  Google Scholar 

  14. H.J. Choi, G.B. Kwon, G.Y. Lee, and D.H. Bae, Reinforcement with Carbon Nanotubes in Aluminum Matrix Composites, Scr. Mater., 2008, 59, p 363–380

    Google Scholar 

  15. R.P. Perez-Bustamante, C.D. Gomez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S.A. Pérez-García, and R. Martínez-Sánchez, Microstructural and Mechanical Characterization of Al-MWCNT Composites Produced by Mechanical Milling, Mater. Sci. Eng. A, 2009, 502, p 159–163

    Article  Google Scholar 

  16. C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, and Q. Cui, An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al-Matrix Composites, Adv. Mater., 2007, 19, p 1128–1132

    Article  Google Scholar 

  17. R. Perez-Bustamante, I. Estrada-Guel, W. Antunez-Flores, M. Miki-Yoshida, P.J. Ferreira, and R. Martınez-Sanchez, Novel Al-Matrix Nanocomposites Reinforced with Multi-Walled Carbon Nanotubes, J. Alloys Compd., 2008, 450, p 323–326

    Article  Google Scholar 

  18. X. Yang, C. Shi, C. He, E. Liu, J. Li, and N. Zhao, Synthesis of Uniformly Dispersed Carbon Nanotube Reinforcement in Al Powder for Preparing Reinforced Al Composites, Composites A, 2011, 42, p 1833–1839

    Article  Google Scholar 

  19. L. Jiang, Z. Li, G. Fan, L. Cao, and D. Zhang, The Use of Flake Powder Metallurgy to Produce Carbon Nanotube (CNT)/Aluminum Composites with a Homogenous CNT Distribution, Carbon, 2012, 50, p 1993–1998

    Article  Google Scholar 

  20. I.Y. Kim, J.H. Lee, G.S. Lee, S.H. Baik, Y.J. Kim, and Y.Z. Lee, Friction and Wear Characteristics of the Carbon Nanotube-Aluminum Composites with Different Manufacturing Conditions, Wear, 2009, 267, p 593–598

    Article  Google Scholar 

  21. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2009, 47, p 570–577

    Article  Google Scholar 

  22. J.Z. Liao, M.J. Tan, and I. Sridhar, Spark Plasma Sintered Multi-Wall Carbon Nanotube Reinforced Aluminum Matrix Composites, Mater. Des., 2010, 31, p S96–S100

    Article  Google Scholar 

  23. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, The Influence of Carbon Nanotube (CNT) Morphology and Diameter on the Processing and Properties of CNT-Reinforced Aluminium Composites, Composites A, 2011, 42, p 234–243

    Article  Google Scholar 

  24. H.J. Choi and D.H. Bae, Strengthening and Toughening of Aluminum by Single-Walled Carbon Nanotubes, Mater. Sci. Eng. A, 2011, 528, p 2412–2417

    Article  Google Scholar 

  25. H.J. Choi, J.H. Shin, B. Min, J. Park, and D.H. Bae, Reinforcing Effects of Carbon Nanotubes in Structural Aluminum Matrix Nanocomposites, J. Mater. Res., 2009, 24, p 2610–2616

    Article  Google Scholar 

  26. H.J. Choi, J.H. Shin, and D.H. Bae, Grain Size Effect on the Strengthening Behavior of Aluminum-Based Composites Containing Multi-Walled Carbon Nanotubes, Compos. Sci. Technol., 2011, 71, p 1699–1705

    Article  Google Scholar 

  27. Q. Huang, D. Jiang, I.A. Ovid’ko, and A. Mukherjee, High-Current-Induced Damage on Carbon Nanotubes: The Case During Spark Plasma Sintering, Scr. Mater., 2010, 63, p 1181–1184

    Article  Google Scholar 

  28. S.R. Bakshi and A. Agarwal, An analysis of the Factors Affecting Strengthening in Carbon Nanotube Reinforced Aluminum Composites, Carbon, 2011, 49, p 533–544

    Article  Google Scholar 

  29. Y.F. Wu, G.Y. Kim, and A.M. Russell, Mechanical Alloying of Carbon Nanotube and Al6061 Powder for Metal Matrix Composites, Mater. Sci. Eng. A, 2012, 532, p 558–566

    Article  Google Scholar 

  30. N. Nayan, S.V.S.N. Murty, S.C. Sharma, K.S. Kumar, and P.P. Sinha, Calorimetric Study on Mechanically Milled Aluminum and Multiwall Carbon Nanotube Composites, Mater. Charact., 2011, 62, p 1087–1093

    Article  Google Scholar 

  31. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Lett., 2010, 10, p 751–758

    Article  Google Scholar 

  32. Y.T. Cheng and C.M. Cheng, Scaling, Dimensional Analysis, and Indentation Measurements, Mater. Sci. Eng. R, 2004, 44, p 91–149

    Article  Google Scholar 

  33. C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, Deformation of Carbon Nanotubes in Nanotube-Polymer Composites, Appl. Phys. Lett., 1999, 74, p 3317–3319

    Article  Google Scholar 

  34. A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford University Press Inc., New York, 2008, p 265

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding from ISRO-IITM Cell (ICSR/ISRO-IITM/MET/11-12/134/SRRB) for carrying out the sudy. Authors are also thankful to Ms. Kanchanamala of IIT Madras for helping with TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa R. Bakshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandran, P., Sirimuvva, T., Nayan, N. et al. Effect of Carbon Nanotube Dispersion on Mechanical Properties of Aluminum-Silicon Alloy Matrix Composites. J. of Materi Eng and Perform 23, 1028–1037 (2014). https://doi.org/10.1007/s11665-013-0835-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0835-1

Keywords

Navigation