Skip to main content
Log in

The Role of Shear-Thickening Fluids (STFs) in Ballistic and Stab-Resistance Improvement of Flexible Armor

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper provides a detailed review on relevant literature related to rheological properties of STFs with particular emphasis on efforts to improve their impact resistance. The review has concisely demonstrated that there are many factors affecting shear-thickening behavior of colloidal suspensions. Nanoparticle characteristics such as shape, size, distribution, solid volume fraction, and interaction with other particles as well as properties related to suspending phase and also flow field could affect the rheological properties of STFs. Recent studies on application of STFs to textile fabrics, preparation techniques, and the factors determining the performance of STF/fabric composites are summarized. Particular emphasis is laid on researches that explore the ballistic, stab, and puncture protective properties of STF-based materials and body armors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. L. Chang, K. Friedrich, A.K. Schlarb, R. Tanner, and L. Ye, Shear-Thickening Behavior of Concentrated Polymer Dispersions Under Steady and Oscillatory Shear, J Mater Sci, 2011, 46, p 339–346

    Article  Google Scholar 

  2. W.H. Boersma, J. Laven, and H.N. Stein, Shear Thickening (Dilatancy) in Concentrated Dispersions, AIChE J, 1990, 36, p 321–3332

    Article  Google Scholar 

  3. K. Yu, H. Cao, K. Qian, X. Sha, and Y. Chen, Shear-Thickening Behavior of Modified Silica Nanoparticles in Polyethylene Glycol, J Nanopart Res, 2012, 14, p 747–755

    Article  Google Scholar 

  4. W. Qiu-mei, R. Jian-ming, H. Bai-yun, Z. Zhong-cheng, and Z. Jian-peng, Rheological Behavior of Fumed Silica Suspension in Polyethylene Glycol, J. Cent. South Univ. Technol., 2006, 13, p 1–5

    Article  Google Scholar 

  5. X.Z. Zhang, W.H. Li, and X.L. Gong, The Rheology of Shear Thickening Fluid (STF) and the Dynamic Performance of an STF-Filled Damper, Smart Mater Struct, 2008, 17, p 035027–035033

    Article  Google Scholar 

  6. T.J. Kang, C.Y. Kim, and K.H. Hong, Rheological Behavior of Concentrated Silica Suspension and Its Application to Soft Armor, J Appl Polym Sci, 2012, 124, p 1534–1541

    Article  Google Scholar 

  7. Y.S. Lee and N.J. Wagner, Dynamic Properties of Shear Thickening Colloidal Suspensions, Rheol Acta, 2003, 42, p 199–208

    Google Scholar 

  8. H.A. Barnes, Shear Thickening (“Dilatancy”) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids, J Rheol, 1989, 33, p 329–366

    Article  Google Scholar 

  9. A. Srivastava, A. Majumdar, and B.S. Butola, Improving the Impact Resistance of Textile Structures by using Shear Thickening Fluids: A Review, Crit Rev Solid State Mater Sci, 2012, 37, p 115–129

    Article  Google Scholar 

  10. D.P. Kalman, R.L. Merrill, N.J. Wagner, and E.D. Wetzel, Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle-Fluid Suspensions, Appl. Mater. Interface, 2009, 1, p 2602–2612

    Article  Google Scholar 

  11. B.J. Maranzano and N.J. Wagner, The Effects of Particle Size on Reversible Shear Thickening of Concentrated Colloidal Dispersions, J. Chem. Phys., 2001, 114, p 10514–10527

    Article  Google Scholar 

  12. B.J. Maranzano and N.J. Wagner, The Effects of Interparticle Interactions and Particle Size on Reversible Shear Thickening: Hard-Sphere Colloidal Dispersions, J Rheol, 2001, 45, p 1205–1222

    Article  Google Scholar 

  13. H.M. Laun, R. Bung, and F. Schmidt, Rheology of Extremely Shear Thickening Polymer Dispersions (Passively Viscosity Switching Fluids), J Rheol, 1991, 35, p 999–1034

    Article  Google Scholar 

  14. R. Helber, F. Doncker, and R. Bung, Vibration Attenuation by Passive Stiffness Switching Mounts, J Sound Vib, 1990, 138, p 47–57

    Article  Google Scholar 

  15. E.V. Lomakin, P.A. Mossakovsky, A.M. Bragov, A.K. Lomunov, A.Y. Konstantinov, M.E. Kolotnikov, F.K. Antonov, and M.S. Vakshtein, Investigation of Impact Resistance of Multilayered Woven Composite Barrier Impregnated with the Shear Thickening Fluid, Arch Appl Mech, 2011, 81, p 2007–2020

    Article  Google Scholar 

  16. K. Yu, H. Cao, K. Qian, L. Jiang, and H. Li, Synthesis and Stab Resistance of Shear Thickening Fluid (STF) Impregnated Glass Fabric Composites, Fibres. Text. East. Eur., 2012, 20, p 126–128

    Google Scholar 

  17. T.A. Hassan, V.K. Rangari, and S. Jeelani, Synthesis, Processing and Characterization of Shear Thickening Fluid (STF) Impregnated Fabric Composites, Mater Sci Eng, A, 2010, 527, p 2892–2899

    Article  Google Scholar 

  18. L.L. Sun, D.S. Xiong, and C.Y. Xu, Application of Shear Thickening Fluid in Ultra High Molecular Weight Polyethylene Fabric, J Appl Polym Sci, 2013, 129, p 1922–1928

    Article  Google Scholar 

  19. Y.S. Lee, E.D. Wetzel, and N.J. Wagner, The Ballistic Impact Characteristics of Kevlar Woven Fabrics Impregnated with a Colloidal Shear Thickening Fluid, J Mater Sci, 2003, 38, p 2825–2833

    Article  Google Scholar 

  20. A. Srivastava, A. Majumdar, and B.S. Butola, Improving the Impact Resistance Performance of Kevlar Fabrics Using Silica Based Shear Thickening Fluid, Mater Sci Eng, A, 2011, 529, p 224–229

    Article  Google Scholar 

  21. B.A. Rosen, C.H.N. Laufer, D.P. Kalman, E.D. Wetzel, and N. J. Wagner, Multi-threat Performance of Kaolin-Based Shear Thickening Fluid (STF)-Treated Fabrics, Proceedings of SAMPE, June 3–7, (Baltimore, MD), 2007

  22. J. M. Szczepanski, Modification and Integration of Shear Thickening Fluids into High Performance Fabrics, M.Sc. Thesis, Ryerson University, 2011

  23. R.G. Egres and N.J. Wagner, The Rheology and Microstructure of Acicular Precipitated Calcium Carbonate Colloidal Suspensions Through the Shear Thickening Transition, J Rheol, 2005, 49, p 719–746

    Article  Google Scholar 

  24. J. Kaldasch and B. Senge, Shear Thickening in Polymer Stabilized Colloidal Suspensions, Colloid Polym Sci, 2009, 287, p p1481–p1485

    Article  Google Scholar 

  25. Y.T. Hu, P. Boltenhagen, and D.J. Pine, Shear Thickening in Low-Concentration Solutions of Wormlike Micelles. I. Direct Visualization of Transient Behavior and Phase Transitions, J Rheol, 1998, 42, p 1185–1208

    Article  Google Scholar 

  26. Y.T. Hu, P. Boltenhagen, E. Matthys, and D.J. Pine, Shear Thickening in Low-Concentration Solutions of Wormlike Micelles. II. Slip, Fracture, and Stability of the Shear-Induced Phase, J Rheol, 1998, 42, p 1209–1226

    Article  Google Scholar 

  27. E.E.B. White, M. Chellamuthu, and J.P. Rothstein, Extensional Rheology of a Shear-Thickening Cornstarch and Water Suspension, Rheol Acta, 2010, 49, p 119–129

    Article  Google Scholar 

  28. W.H. Boersma, P.J.M. Baets, J. Laven, and H.N. Stein, Time-Dependent Behavior and Wall Slip in Concentrated Shear Thickening Dispersions, J Rheol, 1991, 35, p 1093–1120

    Article  Google Scholar 

  29. M.J. Decker, C.J. Halbach, C.H. Nam, N.J. Wagner, and E.D. Wetzel, Stab resistance of Shear Thickening Fluid (STF)-Treated Fabrics, Compos. Sci. Technol., 2007, 67, p 565–578

    Article  Google Scholar 

  30. D.P. Kalman, J.B. Schein, J.M. Houghton, C.H.N. Laufer, E.D. Wetzel, and N.J. Wagner. Polymer Dispersion Based Shear Thickening Fluid-Fabrics for Protective Applications, Proceedings of SAMPE, (Baltimore, MD), 2007, p 1–9

  31. S.R. Raghavan and A. Khan, Shear-Thickening Response of Fumed Silica Suspensions under Steady and Oscillatory Shear, J Colloid Interface Sci, 1997, 185, p 57–67

    Article  Google Scholar 

  32. T.A. Hassan, V.K. Rangari, and S. Jeelani, Sonochemical Synthesis and Rheological Properties of Shear Thickening Silica Dispersions, Ultrason Sonochem, 2010, 17, p 947–952

    Article  Google Scholar 

  33. E.D. Wetzel, Y.S. Lee, R.G. Egres, K.M. Kirkwood, J.E. Kirkwood, and N.J. Wagner, The Effect of Rheological Parameters on the Ballistic Properties of Shear Thickening Fluid (STF)-Kevlar Composites, Proceedings of NUMIFORM, June 13–17, (Columbus, OH), 2004

  34. B.K. Lee, I.J. Kim, and C.G. Kim, The Influence of the Particle Size of Silica on the Ballistic Performance of Fabrics Impregnated with Silica Colloidal Suspension, J Compos Mater, 2009, 43, p 2679–2698

    Article  Google Scholar 

  35. X. Sha, K. Yu, H. Cao, and K. Qian, Shear Thickening Behavior of Nanoparticle Suspensions with Carbon Nanofillers, J Nanopart Res, 2013, 15, p 1816–1826

    Article  Google Scholar 

  36. A. Majumdar, B.S. Butola, and A. Srivastava, Optimal Designing of Soft Body Armour Materials Using Shear Thickening Fluid, Mater Des, 2013, 46, p 191–198

    Article  Google Scholar 

  37. J. M. Houghton, B. A. Schiffman, D. P. Kalman, E. D. Wetzel, and N. J. Wagner, Hypodermic Needle Puncture of Shear Thickening Fluid (STF) Treated Fabrics, Proceedings of SAMPE, June 3–7, (Baltimore, MD), 2007

  38. Y.S. Lee and N.J. Wagner, Rheological Properties and Small-Angle Neutron Scattering of a Shear Thickening, Nanoparticle Dispersion at High Shear Rates, Ind Eng Chem Res, 2006, 45, p 7015–7024

    Article  Google Scholar 

  39. N.C. Crawford, S.K.R. Williams, D. Boldridge, and M.W. Liberatore, Shear-Induced Structures and Thickening in Fumed Silica Slurries, Langmuir, 2013, 29, p 12915–12923

    Article  Google Scholar 

  40. M. Takeda, T. Matsunaga, T. Nishida, H. Endo, T. Takahashi, and M. Shibayama, Rheo-SANS Studies on Shear Thickening in Clay–Poly(ethylene oxide) Mixed Solutions, Macromolecules, 2010, 43, p 7793–7799

    Article  Google Scholar 

  41. R.L. Hoffman, Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. I. Observation of a Flow Instability, Trans. Sco. Rheol., 1972, 16, p 155–173

    Article  Google Scholar 

  42. R.L. Hoffman, Discontinuous and Dilatant Viscosity in Concentrated Suspensions, Part II. Theory and Experimental Tests Behavior, J Colloid Interface Sci, 1974, 46, p 491–506

    Article  Google Scholar 

  43. R.L. Hoffman, Explanations for the Cause of Shear Thickening in Concentrated Colloidal Suspensions, J Rheol, 1998, 42, p 111–123

    Article  Google Scholar 

  44. W.H. Boersma, J. Laven, and H.N. Stein, Viscoelastic Properties of Concentrated Shear-Thickening Dispersions, J Colloid Interface Sci, 1992, 149, p 10–22

    Article  Google Scholar 

  45. H.M. Laun, R. Bung, S. Hess, W. Loose, O. Hess, K. Hahn, E. Hadicke, R. Hingmann, F. Schmidt, and P. Lindner, Rheological and Small Angle Neutron Scattering Investigation of Shear-Induced Particle Structures of Concentrated Polymer Dispersions Submitted to Plane Poiseuille and Couette Flow, J Rheol, 1992, 36, p 743–787

    Article  Google Scholar 

  46. J.W. Bender and N.J. Wagner, Optical Measurement of the Contributions of Colloidal Forces to the Rheology of Concentrated Suspensions, J Colloid Interface Sci, 1995, 172, p 171–184

    Article  Google Scholar 

  47. J.W. Bender and N.J. Wagner, Reversible Shear Thickening in Monodisperse and Bidisperse Colloidal Dispersions, J Rheol, 1996, 40, p 899–916

    Article  Google Scholar 

  48. J.F. Brady and G. Bossis, Stokesian Dynamics, Ann. Rev. Fluid. Mech., 1988, 20, p 111

    Article  Google Scholar 

  49. N.J. Wagner and J.F. Brady, Shear Thickening in Colloidal Dispersions, Phys Today, 2009, 62, p 27–32

    Article  Google Scholar 

  50. B.J. Maranzano and N.J. Wagner, Flow-Small Angle Neutron Scattering Measurements of Colloidal Dispersion Microstructure Evolution Through the Shear Thickening Transition, J. Chem. Phys., 2008, 117, p 10291–10301

    Article  Google Scholar 

  51. J. Chevalier, O. Tillement, and F. Ayela, Structure and Rheology of SiO2 Nanoparticle Suspensions Under Very High Shear Rates, Phys Rev E, 2009, 80, p 051403

    Article  Google Scholar 

  52. H.N. Hwang, J.Y. Lee, Y.W. Kim, Y.H. Kim, Preparation of Silica-Coated MWNTs and Their Addition To Shear Thickening Fluid of Silica/PEG Suspension, Proceedings of 18th International Conference on Composite Materials, August 21–26, (Jeju Island), 2011

  53. M. Grujicic, A. Hariharan, B. Pandurangan, C.-F. Yen, B.A. Cheeseman, Y. Wang, Y. Miao, and J.Q. Zheng, Fiber-Level Modeling of Dynamic Strength of Kevlar® KM2 Ballistic Fabric, J Mater Eng Perform, 2012, 21, p 1107–1119

    Article  Google Scholar 

  54. M. Grujicic, P.S. Glomski, T. He, G. Arakere, W.C. Bell, and B.A. Cheeseman, Material Modeling and Ballistic-Resistance Analysis of Armor-Grade Composites Reinforced with High-Performance Fibers, J Mater Eng Perform, 2009, 18, p 1169–1182

    Article  Google Scholar 

  55. M. Grujicic, W.C. Bell, G. Arakere, T. He, X. Xie, and B.A. Cheeseman, Development of a Meso-scale Material Model for Ballistic Fabric and Its Use in Flexible-Armor Protection Systems, J Mater Eng Perform, 2010, 19, p 22–39

    Article  Google Scholar 

  56. J.W.S. Hearle, High-Performance Fibres, Woodhead Publishing Ltd, England, 2001

    Book  Google Scholar 

  57. J.L. Park, B. Yoon, J.G. Paik, and T.J. Kang, Ballistic Performance of p-Aramid Fabrics Impregnated with Shear Thickening Fluid; Part I: Effect of Laminating Sequence, Text Res J, 2012, 82, p 527–541

    Article  Google Scholar 

  58. J.L. Park, B. Yoon, J.G. Paik, and T.J. Kang, Ballistic Performance of p-Aramid Fabrics Impregnated with Shear Thickening Fluid; Part II: Effect of Fabric Count and Shot Location, Text Res J, 2012, 82, p 542–557

    Article  Google Scholar 

  59. Justice, N. I. J. National Institute of Justice Office of Science and Technology: Washington, DC, Stab Resistance of Personal Body Armor NIJ Standard–0115.00, 2000.

  60. J.H. Lin, C.H. Hsu, and H.H. Meng, Process of Preparing a Nonwoven/Filament/Woven-Fabric Sandwich Structure with Cushioning Effect of Ballistic Resistance, Fibers. Text. East. Eur., 2005, 13, p 43–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mottaghitalab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasanzadeh, M., Mottaghitalab, V. The Role of Shear-Thickening Fluids (STFs) in Ballistic and Stab-Resistance Improvement of Flexible Armor. J. of Materi Eng and Perform 23, 1182–1196 (2014). https://doi.org/10.1007/s11665-014-0870-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0870-6

Keywords

Navigation