Skip to main content
Log in

Physical Simulation of Hot Deformation of Low-Carbon Ti-Nb Microalloyed Steel and Microstructural Studies

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Constitutive equations for the flow behavior of a 0.13 pct C-1.52 pct Mn-0.28 pct Si-0.05 pct Nb-0.052 pct Ti microalloyed steel are determined. For this purpose, uniaxial hot compression tests were performed over a wide range of strain rates (0.01 to 80 s−1) and temperatures (750 to 1050 °C). From microstructural observations, the physical processes that occurred during deformation are discussed and related to the stress-strain responses. Using sinh type constitutive equation, the average apparent activation energy for hot deformation is obtained as 359 kJ/mol. The processing map obtained using the power dissipation efficiency, η, correlates well with microstructural changes observed. In the temperature range of 825-1050 °C and strain rate range of 0.01-0.1 s−1, the strain rate sensitivity map and the power dissipation map exhibit a peak domain wherein dynamic recrystallization is the primary restoration mechanism. Safe domains of strain, strain rate, and temperature for hot working of this steel have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F.B.E. Hassani, A. Chenaouia, R. Dkiouak, L. Elbakkali, and A. Al, Omar, Characterization of Deformation Stability of Medium Carbon Microalloyed Steel During Hot Forging Using Phenomenological and Continuum Criteria, J. Mater. Process. Technol., 2008, 199, p 140–149

    Article  Google Scholar 

  2. J.M. Cabrera, A. Al Omar, J.J. Jonas, and J.M. Prado, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metall. Trans. A, 1997, 28, p 2233–2244

    Article  Google Scholar 

  3. Y.V.R.K. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2013, 22(10), p 2867–2874

    Article  Google Scholar 

  4. Y.V.R.K. Prasad, Author’s Reply: Dynamic Materials Model: Basis and Principles, Metall. Trans. A, 1996, 27, p 235–236

    Article  Google Scholar 

  5. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, On the Hot Working Characteristics of 6061Al-SiC and 6061-Al2O3 Particulate Reinforced Metal Matrix Composites, Compos. Sci. Technol., 2003, 63, p 119–135

    Article  Google Scholar 

  6. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, Development and Validation of a Processing Map for Zirconium Alloys, Model. Simul. Mater. Eng., 2002, 10, p 503–520

    Article  Google Scholar 

  7. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, On the Hot Working Characteristics of 6061 Al-20 vol.% Al2O3 Metal Matrix Composite, J. Mater. Process. Technol., 2014, 2005(166), p 279–285

    Google Scholar 

  8. S.V.S. Narayana Murty and B. Nageswara Rao, Ziegler’s Criterion on the Instability Regions in Processing Maps, Mater. Sci. Lett., 1998, 17, p 1203–1205

    Article  Google Scholar 

  9. A. Momeni, H. Arabi, A. Rezaei, H. Badri, and H.M. Abbasi, Hot Working Behavior of 2205 Austenite-Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2011, 528, p 2158–2163

    Article  Google Scholar 

  10. B. Eghbali and A. Abdollah-zadeh, Influence of Deformation Temperature on the Ferrite Grain Refinement in a Low Carbon Nb-Ti Microalloyed Steel, J. Mater. Process. Technol., 2006, 180, p 44–48

    Article  Google Scholar 

  11. M. Li-qiang, L. Zhen-yu, J. Si-hai, Y. Xiang-qian, and W. Di, Effect of Niobium and Titanium on Dynamic Recrystallization Behavior of Low Carbon Steels, J. Iron Steel Res. Int., 2008, 15(3), p 31–36

    Google Scholar 

  12. O. Kwon and A.J. De Ardo, Interactions Between Recrystallization and Precipitation in Hot-Deformed Microalloyed Steels, Acta Metall. Mater., 1991, 39, p 529–538

    Article  Google Scholar 

  13. C. Jian-chun, L. Qing-you, Y. Qi-long, and S. Xin-jun, Effect of Niobium on Isothermal Transformation of Austenite to Ferrite in HSLA Low-Carbon Steel, J. Iron Steel Res. Int., 2007, 14(3), p 51–55

    Google Scholar 

  14. M. Opiela and A. Grajcar, Hot Deformation Behavior and Softening Kinetics of Ti-V-B Microalloyed Steels, Arch. Civil Mech. Eng., 2012, 12, p 327–333

    Article  Google Scholar 

  15. H. Zhao, G. Liu, and L. Xu, Rate-Controlling Mechanisms of Hot Deformation in a Medium Carbon Vanadium Microalloy Steel, Mater. Sci. Eng. A, 2013, 559, p 262–267

    Article  Google Scholar 

  16. H. Wei, G. Liu, X. Xiao, H. Zhao, H. Ding, and R. Kang, Characterization of Hot Deformation Behavior of a New Microalloyed C-Mn-Al High-Strength Steel, Mater. Sci. Eng. A, 2013, 564, p 140–146

    Article  Google Scholar 

  17. S.F. Medina and C.A. Hernandez, The Influence of Chemical Composition on Peak Strain of Deformed Austenite in Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44(1), p 149–154

    Article  Google Scholar 

  18. S.F. Medina and C.A. Hernandez, General Expression of the Zener-Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44(1), p 137–148

    Article  Google Scholar 

  19. M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1 µm Strength and Toughness of Dual-Phase Steels, Mater. Sci. Eng. A, 2010, 527, p 7832–7840

    Article  Google Scholar 

  20. S.F. Medina and C.A. Hernandez, Modelling of the Dynamic Recrystallization of Austenite in Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44, p 165–171

    Article  Google Scholar 

  21. B. Eghbali and A. Abdollah-Zadeh, Strain-Induced Transformation in a Low Carbon Microalloyed Steel During Hot Compression Testing, Scripta Mater., 2006, 54, p 1205–1209

    Article  Google Scholar 

  22. S.Q. Yuan and G.L. Liang, Dissolving Behaviour of Second Phase Particles in Nb-Ti Microalloyed Steel, Mater. Sci. Lett., 2009, 63, p 2324–2326

    Article  Google Scholar 

  23. B. Eghbali and A. Abdollah-Zadeh, Deformation-Induced Ferrite Transformation in a Low Carbon Nb-Ti Microalloyed Steel, Mater. Des., 2007, 28, p 1021–1026

    Article  Google Scholar 

  24. A.I. Fernández, P. Uranga, B. López, and J.M. Rodriguez-Ibabe, Dynamic Recrystallization Behavior Covering a Wide Austenite Grain Size Range in Nb and Nb-Ti Microalloyed Steels, Mater. Sci. Eng. A, 2003, 361, p 367–376

    Article  Google Scholar 

  25. Y. Cao, F. Xiao, G. Qiao, X. Zhang, and B. Liao, Quantitative Research on Effects of Nb on hot Deformation Behaviors of High-Nb Microalloyed Steels, Mater. Sci. Eng. A, 2011, 530, p 277–284

    Article  Google Scholar 

  26. S.F. Medina and J.E. Mancill, Influence of Alloying Elements in Solution on Static Recrystallization Kinetics of Hot Deformed Steels, ISIJ Int., 1996, 36(8), p 1063–1069

    Article  Google Scholar 

  27. A. Ghosh, S. Das, S. Chatterjee, B. Mishra, and P.R. Rao, Influence of Thermo-Mechanical Processing and Different Post-Cooling Techniques on Structure and Properties of an Ultra Low Carbon Cu Bearing HSLA Forging, Mater. Sci. Eng. A, 2003, 348, p 299–308

    Article  Google Scholar 

  28. S.C. Hong and K.S. Lee, Influence of Deformation Induced Ferrite Transformation on Grain Refinement of Dual Phase Steel, Mater. Sci. Eng. A, 2002, 323, p 148–159

    Article  Google Scholar 

  29. A.Z. Hanzaki, R. Pandi, P.D. Hodgson, and S. Yue, Continuous Cooling Deformation Testing of Steels, Metall. Trans. A, 1993, 24, p 2657–2665

    Article  Google Scholar 

  30. B. Eghbali, Study on the Ferrite Grain Refinement During Intercritical Deformation of a Microalloyed Steel, Mater. Sci. Eng. A, 2010, 527, p 3407–3410

    Article  Google Scholar 

  31. R.K. Gupta, S.V.S. Narayana Murty, B. Pant, V. Agarwala, and P.P. Sinha, Hot Workability of γ + α2 Titanium Aluminide: Development of Processing Map and Constitutive Equations, Mater. Sci. Eng. A, 2012, 551, p 169–186

    Article  Google Scholar 

  32. B. Chen, W. Zhou, S. Li, X.L. Li, and C. Lu, Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy, J. Mater. Eng. Perform., 2013, 20(9), p 2458–2466

    Article  Google Scholar 

  33. H. Ziegler, E. Becker, B. Budiansky, H.A. Lauwerier, and T. Koiter, An Introduction to Thermodynamics, 2nd ed., North-Holland Publishing Company, New York, 1983

    Google Scholar 

  34. F. Montheillet, J.J. Jonas, and K.W. Neale, Modeling of Dynamic Material Behavior: A Critical Evaluation of the Dissipator Power co-content Approach, Metall. Trans. A, 1996, 27, p 232–235

    Article  Google Scholar 

  35. A.R. Maldar, G.R. Ebrahimi, M. Haghshenas, M. Jahazi, and P. Bocher, Thermomechanical Characterization of Mg-9Al-1Zn Alloy Using Power Dissipation Maps, J. Mater. Eng. Perform., 2013, 22(11), p 3306–3314

    Article  Google Scholar 

  36. Y.H. Duan, Hot Deformation and Processing Map of Pb-Mg-10Al-1B Alloy, J. Mater. Eng. Perform., 2013, 20(10), p 3049–3054

    Article  Google Scholar 

  37. C. Poletti, J. Six, M. Hochegger, H.P. Degischer, and S. Ilie, Hot Deformation Behaviour of Low Alloy Steel, Steel Res. Int., 2011, 82, p 710–718

    Article  Google Scholar 

  38. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  39. H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot Working Characteristics of Steels in Austenitic State, J. Mater. Process. Technol., 1995, 53, p 293–310

    Article  Google Scholar 

  40. H.J. McQueen, Elevated Temperature Deformation at Forming Rates of 10−2 to 102 s−1, Metall. Trans. A, 2002, 33, p 345–362

    Article  Google Scholar 

  41. Dynamic Systems Inc. Elimination of Load Cell Ringing During High Speed Deformation by Mathematical Treatment, Application note, New York, 2001

  42. T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, J. Mater. Process. Technol., 1995, 53, p 349–361

    Article  Google Scholar 

  43. D.Q. Bai, Y. Yue, T.M. Maccagno, and J.J. Jonas, Continuous Cooling Transformation Temperatures Determined by Compression Tests in Low Carbon Bainitic Grades, Metall. Trans. A, 1998, 29, p 989–1001

    Article  Google Scholar 

  44. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st ed., Pergamon Materials Series, Oxford, 2007

    Google Scholar 

  45. M.C. Zhao, K. Yang, F.R. Xiao, and Y.Y. Shan, Continuous Cooling Transformation of Undeformed and Deformed Low Carbon Pipeline Steels, Mater. Sci. Eng. A, 2003, 355, p 126–136

    Article  Google Scholar 

  46. S.M. Abbasi and A. Momeni, Hot Working Behavior of Fe-29Ni-17Co Analyzed by Mechanical Testing and Processing Map, Mater. Sci. Eng. A, 2012, 552, p 330–335

    Article  Google Scholar 

  47. S.K. Rajput, M. Dikovits, G.P. Chaudhari, C. Poletti, F. Warchomicka, V. Pancholi, and S.K. Nath, Physical Simulation of Hot Deformation and Microstructural Evolution of AISI, 1016 Steel Using Processing Maps, Mater. Sci. Eng. A, 2013, 587, p 291–300

    Article  Google Scholar 

  48. J.J. Jonas, R.A. Holt, and C.E. Coleman, Plastic Stability in Tension and Compression, Acta Metall., 1976, 24, p 911–918

    Article  Google Scholar 

  49. A.F. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16, p 26–40

    Article  Google Scholar 

  50. A. Smolej, B. Skaza, and M. Fazarinc, Determination of the Strain-Rate Sensitivity and the Activation Energy of Deformation in the Superplastic Aluminium Alloy Al-Mg-Mn-Sc, Mater. Geoenviron., 2009, 56, p 389–399

    Google Scholar 

  51. J. Liu, H. Chang, R. Wu, T.Y. Hsu, and X. Ruan, Investigation on Hot Deformation Behavior of AISI, T1 High-Speed Steel, Mater. Charact., 2000, 45, p 175–186

    Article  Google Scholar 

  52. H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot Deformation Behavior of a Medium Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882

    Article  Google Scholar 

  53. X. Fu-ren, C. Ya-bin, Q. Gui-ying, Z. Xiao-bing, and L. Bo, Effect of Nb Solute and NbC Precipitates on Dynamic or Static Recrystallization in Nb Steels, J. Iron Steel Res. Int., 2012, 19(11), p 52–56

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support received under the DST-BMWF, ÖAD Indo-Austrian scientific cooperation scheme. In addition, the authors would like to thank Dr. Cecilia Poletti and Martina Dikovits of Technical University, Graz, Austria for help in conducting the high strain rate compression tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Chaudhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, S.K., Chaudhari, G.P. & Nath, S.K. Physical Simulation of Hot Deformation of Low-Carbon Ti-Nb Microalloyed Steel and Microstructural Studies. J. of Materi Eng and Perform 23, 2930–2942 (2014). https://doi.org/10.1007/s11665-014-1059-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1059-8

Keywords

Navigation