Skip to main content
Log in

Interface Phenomena and Bonding Mechanism in Magnetic Pulse Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Magnetic pulse welding (MPW) is a solid-state impact welding technology that provides metallurgical joints while exhibiting a negligible heat-affected zone. The MPW process is a high speed single shot welding technique used mainly for joining tubular components in a lap configuration and characteristic length scales of few millimeters to centimeters. It is similar in operation to explosive welding and shares the same physical principles. The nature of bonding in MPW is not sufficiently understood yet and some controversial explanations are reported in the literature. The two major ideas are based on either solid state bonding or local melting and solidification. The present work summarizes our current understanding of the bonding mechanism and the structure in various similar and dissimilar metal pairs joined by MPW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. Uhlmann and A. Ziefle, Modelling Pulse Magnetic Welding Processes—An Empirical Approach, 4th International Conference on High Speed Forming, 2010, p 108–116.

  2. D. Winter, Old Process of Magnetic Pulse Welding Offers New Possibilities, Auto World USA, 1999, 35(1), p 57–60

    Google Scholar 

  3. M. Pezzutti, Innovative Welding Technologies for the Automotive Industry, Weld. J. USA, 2000, 79(6), p 43–46

    Google Scholar 

  4. V. Shribman, A. Stern, Y. Livshitz, and O. Gafri, Magnetic Pulse Welding Produces High-Strength Aluminum Welds, Weld. J., 2002, 81, p 33–37

    Google Scholar 

  5. V. Shribman and H. Kramer, Proceedings: The First Technical Conference on Industrialized Magnetic Pulse Welding and Forming, SLV Munich, German Welding Institute, 2008

  6. V. Shribman, Magnetic Pulse Welding for Dissimilar and Similar Materials, 3rd International Conference on High Speed Forming, 2008, p 13–22

  7. S.D. Kore, P.P. Date, S.V. Kulkarni, S. Kumar, D. Rani, M.R. Kulkarni, S.V. Desai, R.K. Rajawat, K.V. Nagesh, and D.P. Chakravarty, Application of Electromagnetic Impact Technique for Welding Copper-to-Stainless Steel Sheets, Int. J. Adv. Manuf. Technol., 2011, 54, p 949–955

    Article  Google Scholar 

  8. R.N. Raoelison, N. Buiron, M. Rachik, D. Haye, G. Franz, and M. Habak, Study of the Elaboration of a Practical Weldability Window in Magnetic Pulse Welding, J. Mater. Process. Technol., 2013, 213(8), p 1348–1354

    Article  Google Scholar 

  9. K.K. Khrenov and V.A. Chudakov, Magnetic-Pulse Welding, Avtomat Svarka, 1968, 2, p 74–75

    Google Scholar 

  10. Z.A. Chankvetadze and N.M. Beriev, Determination of the Collision Velocity in Magnetic Pulse Welding, FizikaKhim. Obrabot. Mat., 1974, 4, p 132–134

    Google Scholar 

  11. E.S. Karakozov, Z.A. Chankvetadze, and N.M. Beriev, The Interaction of Metals in Magnetic Impulse Welding, Svar. Proiz, 1977, 12, p 4–6

    Google Scholar 

  12. Z.A. Chankvetadze, Technological Features of Magnetic Pulse Welding and Conditions Under Which the Joint is Formed, Automat. Weld. (USSR), 1979, 32(6), p 26–28

    Google Scholar 

  13. V.F. Karpouchin, V.A. Glouschenkov, and V.A. Mironov, Magnetic Pulse Welding, JOM, 1991, 5, p 241–245

    Google Scholar 

  14. M. Marya and S. Marya, Interfacial Microstructures and Temperatures in Aluminum-Copper Electromagnetic Pulse Welds, Sci. Technol. Weld. Join., 2004, 9(6), p 541–547

    Article  Google Scholar 

  15. K.J. Lee, K. Shinji, A. Takashi, and T. Aizawa, Interfacial Microstructure and Strength of Steel/Aluminum Alloy Lap Joint Fabricated by Magnetic Pressure Seam Welding, Mater. Sci. Eng. A, 2007, 471(1-2), p 95–101

    Article  Google Scholar 

  16. I.V. Volobuev and A.V. Legeza, Phase Transformations in Joints Produced by Magnetic Pulse Welding, Svar. Proiz., 1972, 8, p 8–9

    Google Scholar 

  17. V.P. Epechurin, Properties of Bimetal Joints Produced by Magnetic-Pulse Welding, Weld. Prod., 1974, 21(5), p 4–12

    Google Scholar 

  18. B. Yablochnikov, Apparatus for Magnetic Pulse Welding Large Diameter Thin-Walled Pipes, AVT. Svarka, 1983, 58(4), p 48–51

    Google Scholar 

  19. I. Masumoto, K. Tamaki, and M. Kojima, Study on Electromagnetic Welding—Report 1: Electromagnetic Welding of Aluminum Tube to Aluminum or Dissimilar Metal Cores, Trans. Jpn. Weld. Soc., 1985, 16(2), p 110–116

    Google Scholar 

  20. A.A. Efimenko, E.I. Belenkii, A.V. Kalenichenko, and Y.A.D. Korol, Examination of the Interface of Cu/Al Pipes Welded by MPW, Weld. Prod. (USSR), 1985, 32(10), p 30–31

    Google Scholar 

  21. K. Tamaki and M. Kojima, Factors Affecting the Result of Electromagnetic Welding of Aluminum Tube, Trans. Jpn. Weld. Soc., 1988, 19(1), p 53–59

    Google Scholar 

  22. Y.U.A. Sergeeva, V.A. Chudakov, and G.N. Gordon, Examination of the Transition Zone in Magnetic Pulse Welded Joints Between Aluminum and Copper, Paton Weld. J., 1989, 1(12), p 874–877

    Google Scholar 

  23. L.I. Markashova, Y.A. Sergeeva, V.V. Statsenko, and V.A. Chudakov, Special Features of the Mechanism of Structure Formation in Magnetic Pulsed Welding, Paton Weld. J., 1991, 3(3), p 187–191

    Google Scholar 

  24. V.A. Glouschenkov, V.F. Karpouchin, and V.A. Pesotsky, Achievements in Magnetic Pulse Welding and Assembly of Tubular Structures, JOM, 1993, 6, p 473–484

    Google Scholar 

  25. H. Hokari, T. Sato, K. Kawauchi, and A. Muto, Magnetic Impulse Welding of Aluminum Tube and Copper Tube with Various Core Materials, Weld. Int., 1998, 12(8), p 619–626

    Article  Google Scholar 

  26. G.R. Cowan, O.R. Bergmann, and A.H. Holzman, Mechanism of Bond Zone Wave Formation in Explosion-Clad Metals, Metall. Trans., 1971, 2(11), p 3145–3155

    Article  Google Scholar 

  27. K.K. Botros and T.K. Groves, Characteristics of the Wavy Interface and the Mechanism of Its Formation in High-Velocity Impact Welding, J. Appl. Phys., 1980, 51(7), p 3715–3721

    Article  Google Scholar 

  28. R.A. Patterson, Fundamentals of Explosion Welding, ASM Handbook—Welding, Brazing and Soldering, Vol 6, 1993, p 160–164 and 303–305

  29. A. Oberg, N. Martensson, and J.A. Schweitz, Fundamental Aspects of Formation and Stability of Explosive Welds, Metall. Trans. A., 1985, 16A, p 841–852

    Article  Google Scholar 

  30. A. Mousavi and S.T.S. Al-Hassani, Numerical and Experimental Studies of the Mechanism of the Way Interface Formations in Explosive/Impact Welding, J. Mech. Phys. Solid, 2005, 53, p 2501–2528

    Article  Google Scholar 

  31. M. Marya, S. Marya, and D. Priem, On the Characteristics of Electromagnetic Welds between Aluminum and Other Metals and Alloys, Weld. World, 2005, 49(5-6), p 74–84

    Article  Google Scholar 

  32. T. Aizawa, M. Kashani, and K. Okagawa, Application of Magnetic Pulse Welding for Aluminum Alloys and SPCC Steel Sheet Joints, Weld. J., 2007, 86, p 119s–124s

    Google Scholar 

  33. M. Chizari, S.T.S. Al-Hassani, and L.M. Barrett, Effect of Flyer Shape on the Bonding Criteria in Impact Welding of Plates, J. Mater. Process. Technol., 2009, 209(1), p 445–454

    Article  Google Scholar 

  34. Y. Zhang, S.S. Babu, C. Prothe, M. Blakely, J. Kwasegroch, M. LaHa, and G.S. Daehn, Application of High Velocity Impact Welding at Varied Different Length Scales, J. Mater. Process. Technol., 2011, 211(5), p 944–952

    Article  Google Scholar 

  35. S.D. Kore, P. Dhanesh, S.V. Kulkarni, and P.P. Date, Numerical Modeling of Electromagnetic Welding, Int. J. Appl. Electromagn. Mech., 2010, 32(1), p 1–19

    Google Scholar 

  36. S.D. Kore, P.P. Date, and S.V. Kulkarni, Effect of Process Parameters on Electromagnetic Impact Welding of Aluminum Sheets, Int. J. Impact Eng., 2007, 34(8), p 1327–1341

    Article  Google Scholar 

  37. Y. Zhang, S.S. Babu, and G.S. Daehn, Interfacial Ultrafine-Grained Structures on Aluminum alloy 6061 Joint and Copper Alloy 110 Joint Fabricated by Magnetic Pulse Welding, J. Mater. Sci., 2010, 45(17), p 4645–4651

    Article  Google Scholar 

  38. S.D. Kore, J. Imbert, M.J. Worswick, and Y. Zhou, Electromagnetic Impact Welding of Mg to Al Sheets, Sci. Technol. Weld. Join., 2009, 14(6), p 549–553

    Article  Google Scholar 

  39. M. Watanabe and S. Kumai, Interfacial Morphology of Magnetic Pulse Welded Aluminum/Aluminum and Copper/Copper Lap Joints, Mater. Trans., 2009, 50(2), p 286–292

    Article  Google Scholar 

  40. M. Watanabe and S. Kumai, High-Speed Deformation and Collision Behavior of Pure Aluminum Plates in Magnetic Pulse Welding, Mater. Trans., 2009, 50(8), p 2035–2042

    Article  Google Scholar 

  41. S.V. Desai, S. Kumar, P. Satyamurthy, J.K. Chakravartty, and D.P. Chakravarthy, Scaling Relationships for Input Energy in Electromagnetic Welding of Similar and Dissimilar Metals, J. Electromagn. Anal. Appl., 2010, 2, p 563–570

    Google Scholar 

  42. S.D. Kore, P.P. Date, S.V. Kulkarni, S. Kumar, D. Rani, M.R. Kulkarni, S.V. Desai, R.K. Rajawat, K.V. Nagesh, and D.P. Chakravarty, Electromagnetic Impact Welding of Copper-to-Copper Sheets, Int. J. Mater. Form., 2010, 3, p 117–121

    Article  Google Scholar 

  43. Y. Zhang, S. Babu, and G. S. Daehn, Impact Welding in a Variety of Geometric Configurations, 4th International Conference on High Speed Forming, 2010, p 97–107

  44. A. Berlin, T.C. Nguyen, M.J. Worswick, and Y. Zhou, Metallurgical Analysis of Magnetic Pulse Welds of AZ31 Magnesium Alloy, Sci. Technol. Weld. Join., 2011, 16(8), p 728–734

    Article  Google Scholar 

  45. Y. Livshitz, O. Gafri, B. Spitz, and V. Shribman, Magnetic Pulse Welding of Magnesium, Magnesium-2000: Second International Conference on Magnesium Science and Technology, 2000, p 464–471

  46. M. Kimchi, H. Shao, W. Cheng, and P. Krishnaswamy, Magnetic Pulse Welding Aluminium Tubes to Steel Bars, Weld. World, 2004, 48(3-4), p 19–22

    Article  Google Scholar 

  47. A. Ben-Artzy, A. Stern, N. Frage, and V. Shribman, MPW of Dissimilar Metal Couples, Welding and Joining—2005. Front. Mater. Join., 2005, p 246

  48. A. Ben-Artzy, A. Stern, N. Frage, and V. Shribman, Interface Phenomena in Aluminum Magnesium Magnetic Pulse Welding, Sci. Technol. Weld. Join., 2008, 13(4), p 402–408

    Article  Google Scholar 

  49. K. Faes, T. Baaten, W. De Waele, and N. Debroux, Joining of Copper to Brass Using Magnetic Pulse, Welding 4th International Conference on High Speed Forming, 2010, p 84–96

  50. G. Göbel, J. Kaspar, T. Herrmannsdörfer, B. Brenner, and E. Beyer, Insights into intermetallic Phases on Pulse Welded Dissimilar Metal Joints, Welding 4th International Conference on High Speed Forming, 2010, p 127–136

  51. X. Zhidan, C. Junjia, Y. Haiping, and L. Chunfeng, Research on the Impact Velocity of Magnetic Impulse Welding of Pipe Fitting, Mater. Des., 2013, 49, p 736–745

    Article  Google Scholar 

  52. P. Zhang, M. Kimchi, H. Shao, J.E. Gould, and G.S. Daehn, Analysis of the Electromagnetic Impulse Joining Process with a Field Concentrator, AIP Conf. Proc., 2004, 712, p 1253–1258

    Article  Google Scholar 

  53. S. Kakizaki, M. Watanabe, and S. Kumai, Simulation and Experimental Analysis of Metal Jet Emission and Weld Interface Morphology in Impact Welding, Mater. Trans., 2011, 52(5), p 1003–1008

    Article  Google Scholar 

  54. J.L. Robinson, Fluid Mechanics of Copper: Viscous Energy Dissipation in Impact Welding, J. Appl. Phys., 1977, 48(6), p 2202–2207

    Article  Google Scholar 

  55. T.A. Palmer, J.W. Elmer, D. Brasher, D. Butler, and R. Riddle, Development of an Explosive Welding Process for Producing High-Strength Welds Between Niobium and 6061-T651 Aluminum, Weld. J., 2006, 85(11), p 252s–263s

    Google Scholar 

  56. R.N. Raoelison, N. Buiron, M. Rachik, D. Haye, and G. Franz, Efficient Welding Conditions in Magnetic Pulse Welding Process, J. Manuf. Proc., 2012, 14(3), p 372–377

    Article  Google Scholar 

  57. A. Stern, M. Aizenshtein, V. Shribman, and O. Gafri, A Study of the Interface in Magnetic Pulse Welding of Dissimilar Metals, Proceedings of Welding and Joining—2000: New Materials and New Perspectives, 2000, p 62–64

  58. A. Stern, U. Admon, M. Aizenshtein, V. Shribman, Y. Livshitz, and O. Gafri, Bond Structure in Electromagnetic Pulse Welding of Similar and Dissimilar Metals, Proc. Eurojoin, 2001, 4, p 75–82

    Google Scholar 

  59. A. Stern and M. Aizenshtein, On the Bonding Zone Formation in Magnetic Pulse Welds, Sci. Technol. Weld. Join., 2002, 7(5), p 339–342

    Article  Google Scholar 

  60. M. Watanabe, S. Kumai, G. Hagimoto, Q. Zhang, and K. Nakayama, Interfacial Microstructure of Aluminum/Metallic Glass Lap Joints Fabricated by Magnetic Pulse Welding, Mater. Trans., 2009, 50(6), p 1279–1285

    Article  Google Scholar 

  61. G. Göbel, E. Beyer, J. Kaspar, and B. Brenner, Dissimilar Metal Joining: Macro- and Microscopic Effects of MPW, 5th International Conference on High Speed Forming, 2012, p 179–188

  62. Y. Haiping, X. Zhidan, F. Zhisong, Z. Zhixue, and L. Chunfeng, Mechanical Property and Microstructure of Aluminum Alloy—Steel Tubes Joint by Magnetic Pulse Welding, Mater. Sci. Eng. A, 2013, 561(20), p 259–265

    Google Scholar 

  63. A. Stern, M. Aizenshtein, G. Moshe, S.R. Cohen, and N. Frage, The Nature of Interfaces in Al-1050/Al-1050 and Al-1050/Mg-AZ31 Couples Joined by Magnetic Pulse Welding (MPW), J. Mater. Eng. Perform., 2013, 22(7), p 2098–2103

    Article  Google Scholar 

  64. A. Stern and M. Aizenshtein, Magnetic pulse welding of Al to Mg alloys: structural mechanical properties of the interfacial layer, Mater. Sci. Technol., 2011, 27(12), p 1809–1813

    Article  Google Scholar 

  65. A. Ben-Artzy, A. Stern, N. Frage, V. Shribman, and O. Sadot, Wave Formation Mechanism in Magnetic Pulse Welding, Int. J. Impact Eng., 2010, 37(4), p 397–404

    Article  Google Scholar 

  66. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1961, p 64

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Y. Livshitz and O. Gafri of PULSAR technology LTD, for the experimental effort that was done in preparing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aizenshtein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stern, A., Shribman, V., Ben-Artzy, A. et al. Interface Phenomena and Bonding Mechanism in Magnetic Pulse Welding. J. of Materi Eng and Perform 23, 3449–3458 (2014). https://doi.org/10.1007/s11665-014-1143-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1143-0

Keywords

Navigation