Skip to main content
Log in

Effect of Heat Treatments on the Mechanical Properties of Ti-3Al-2.5V Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Titanium alloy Ti-3Al-2.5V is cheaper to produce and has the potential of improved ductility and formability compared to the Ti-6Al-4V alloy. Various heat treatments were performed on cylindrical tensile test bars in order to optimize the mechanical properties of Ti-3Al-2.5V. The tensile properties of heat-treated Ti-3Al-2.5V were determined at four annealing temperatures with different quenching methods and five different solution treatments and five different aging treatments for varying hours. The samples were tensile tested. The results indicated that optimum properties of high strength and ductility were reached at 926 °C of solution treatment and 480 °C of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Boyer, G. Welsch, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994, p 3–9

    Google Scholar 

  2. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213, p 103–114

    Article  Google Scholar 

  3. R. Boyer, G. Welsch, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994, p 263–286

    Google Scholar 

  4. Haynes Ti-3Al-2.5V Alloy, Tube and Pipe Products, Haynes International, http://www.haynesintl.com/pdf/h5000.pdf, Accessed 7 February 2015

  5. Bikes/T/Titanium Strength Comparison, http://www.bmxmuseum.com/bikes/info/104, Accessed 11 April 2013

  6. R.W. Davies, M.A. Khaleel, W.C. Kinsel, and H.M. Zbib, Anisotropic Yield Locus Evolution During Cold Pilgering of Titanium Alloy Tubing, J. Eng. Mater. Technol., 2002, 2002(124), p 125–134

    Article  Google Scholar 

  7. B. Li and M.C. Gupta, Crack Growth Life of Ti-3Al-2.5V Tubes Under Internal Impulse Pressure, Mater. Sci. Eng., 2006, A431, p 146–151

    Article  Google Scholar 

  8. Y. Lin, M.C. Gupta, R.E. Taylor, C. Lei, W. Stone, T. Speidel, M. Yu, and R. Williams, Nanosecond Pulsed Laser Micromachining for Experimental Fatigue Life Study of Ti-3Al-2.5V Tubes, Opt. Lasers Eng., 2009, 47(1), p 118–122

    Article  Google Scholar 

  9. S. Gollipudi, I. Charit, and K.L. Murty, Creep Mechanisms in Ti-3Al-2.5V Alloy Tubing Deformed Under Closed-End Internal Gas Pressurization, Acta Mater., 2008, 56(10), p 2406–2419

    Article  Google Scholar 

  10. V. Venkatesan, D.S. Sarma, and K.L. Murty, On the Origin of Creep Anisotropy in a Ti-3Al-2.5V Alloy, J. Mater. Sci. Lett., 1991, 10(16), p 984–986

    Article  Google Scholar 

  11. H. Li, H. Yang, F.F. Song, M. Zahn, and G.J. Li, Springback Characterization and Behaviors of High-Strength Ti-3Al-2.5V Tube in Cold Rotary Draw Bending, J. Mater. Process. Technol., 2012, 212, p 1973–1987

    Article  Google Scholar 

  12. H. Li, H. Yang, F.-F. Song, and G.-J. Li, Springback Nonlinearity of High-Strength Titanium Alloy Tube upon Mandrel Bending, Int. J. Precis. Eng. Manuf., 2013, 14(3), p 429–438

    Article  Google Scholar 

  13. A. Salam and C. Hammond, Superplasticity in Ti-3Al-2.5V, J. Mater. Sci. Lett., 2000, 19, p 1731–1733

    Article  Google Scholar 

  14. F. Javidrad, M. Farghadani, and M. Hedari, The MPAW of Ti-3Al-2.5V Thin Sheets and Its Effect on Mechanical and Microstructural Properties, J. Mater. Eng. Perform., 2014, 23(2), p 666–672

    Article  Google Scholar 

  15. P.Y. Lim, P.L. She, and H.C. Shih, Microstructure Effect on Microtopography of Chemically Etched α + β Alloys, Appl. Surf. Sci., 2006, 253, p 449–458

    Article  Google Scholar 

  16. B. Sarrail, C. Schrupp, S. Babakhanyan, K. Muscare, J. Foyos, J. Ogren, P. Stoyanov, S. Sparkowich, R. Sutherlong, R. Clark, Jr., and O.S. Es-Said, Quenching Methods for Ti-325 Alloy, Eng. Fail. Anal., 2007, 14, p 1402–2405

    Google Scholar 

  17. Aircraft Materials, Titanium alloy Grade 9 / Ti-3Al-2.5V, http://aircraftmaterials.com/data/titanium/ti3al2-5v.html, Accessed 20 April 2015

  18. Heat Treating of Titanium and Titanium Alloys, www.keytometals.com/Article97.htm, Accessed 19 April 2013

  19. L. Zeng, and L. Haylock, An Evaluation of Microstructure, Texture, and Oxidation Behaviors of Ti-3Al-2.5V, Alcoa Fastening Systems, Torrance, CA, AeroMat 2011, Long Beach, CA, May 2011

  20. Titanium Ti-6Al-4V, (Grade 5) Annealed, ASM Material Data Sheet, http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641, Accessed 25 February 2015

  21. Titanium Ti-3Al-2.5V, (Grade 5) STA, ASM Material Data Sheet, http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP642, Accessed 25 February 2015

  22. Y.N. Wang and J.C. Huang, Texture Analysis in Hexagonal Materials, Mater. Chem. Phys., 2003, 81(1), p 11–26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Es-Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M., Chavez, T., Dearborn, M. et al. Effect of Heat Treatments on the Mechanical Properties of Ti-3Al-2.5V Alloy. J. of Materi Eng and Perform 24, 3277–3290 (2015). https://doi.org/10.1007/s11665-015-1628-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1628-5

Keywords

Navigation