Skip to main content
Log in

An Investigation into Hot Deformation Characteristics and Processing Maps of High-Strength Armor Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The isothermal hot compression tests of high-strength armor steel over wide ranges of strain rates (0.01-10 /s) and deformation temperatures (950-1100 °C) are carried out using Gleeble thermo-simulation machine. The true stress-strain data obtained from the experiments are employed to establish the constitutive equations based on the strain-compensated Arrhenius model. With strain-compensated Arrhenius model, good agreement between the experimental and predicted values is achieved, which represents the highest accuracy in comparison with the other models. The hot deformation activation energy is estimated to be 512 kJ/mol. By employing dynamic material model, the processing maps of high-strength armor steel at various strains are established. A maximum efficiency of about 45% of power dissipation is obtained at high temperature and low strain rate. Due to the high power dissipation efficiency and excellent processing ability in dynamic recrystallization zone for metal material, the optimum processing conditions are selected such that the temperature range is between 1050 and 1100°C and the strain rate range is between 0.01 and 0.1/s. Transmission electron microscopy observations show that the dislocation density is directly associated with the value of processing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Cho, H.S. Jeong, D.J. Cha, W.B. Bae, and J.W. Lee, Prediction of Microstructural Evolution and Recrystallization Behaviors of a Hot Working Die Steel by FEM, J. Mater. Process. Technol., 2005, 160, p 1–8

    Article  Google Scholar 

  2. K.L. Wang, M.W. Fu, S.Q. Lu, and X. Li, Study of the Dynamic Recrystallization of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy in b-Forging Process via Finite Element Method Modeling and Microstructure Characterization, Mater. Des., 2011, 32, p 1283–1291

    Article  Google Scholar 

  3. Y.C. Lin and M.S. Chen, Numerical simulation and experimental verification of microstructure evolution in a three-dimensional hot upsetting process, J. Mater. Process. Technol., 2009, 209, p 4578–4583

    Article  Google Scholar 

  4. Y.C. Lin, M.S. Chen, and J. Zhong, Numerical Simulation for Stress/Strain Distribution and Microstructural Evolution in 42CrMo Steel During Hot Upsetting Process, Comput. Mater. Sci., 2008, 43, p 1117–1122

    Article  Google Scholar 

  5. M. Srinivasan, C. Loganathan, R. Narayanasamy, V. Senthilkumar, Q.B. Nguyen, and M. Gupta, Study on Hot Deformation Behavior and Microstructure Evolution of Cast-Extruded AZ31B Magnesium Alloy and Nanocomposite Using Processing Map, Mater. Des., 2013, 47, p 449–455

    Article  Google Scholar 

  6. M.S. Chen, Y.C. Lin, and X.S. Ma, The Kinetics of Dynamic Recrystallization of 42CrMo Steel, Mater. Sci. Eng. A, 2012, 556, p 260–266

    Article  Google Scholar 

  7. B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan, Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Mg-20Zn-0.3Zr Alloy Based on True Stress-Strain Curves, Mater. Sci. Eng. A, 2013, 560, p 727–733

    Article  Google Scholar 

  8. B. Li, Q.L. Pan, Z.Y. Zhang, and C. Li, Characterization of Flow Behavior and Microstructural Evolution of Al-Zn-Mg-Sc-Zr Alloy Using Processing Maps, Mater. Sci. Eng. A, 2012, 556, p 844–848

    Article  Google Scholar 

  9. S.V. Mehtonen, L.P. Karjalainen, and D.A. Porter, Modeling of the High Temperature Flow Behavior of Stabilized 12-27 wt.% Cr Ferritic Stainless Steels, Mater. Sci. Eng. A, 2014, 607, p 44–52

    Article  Google Scholar 

  10. A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, and A. Marandi, Constitutive Description of High Temperature Flow Behavior of Sanicro-28 Super-austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 589, p 76–82

    Article  Google Scholar 

  11. I. Mejía, G. Altamirano, A. Bedolla-Jacuinde, and J.M. Cabrera, Modeling of the Hot Flow Behavior of Advanced Ultra-high Strength Steels (A-UHSS) Micro Alloyed with Boron, Mater. Sci. Eng. A, 2014, 610, p 116–125

    Article  Google Scholar 

  12. R. Bobbili, V. Madhu, and A.K. Gogia, Neural Network Modeling to Evaluate the Dynamic Flow Stress of High Strength Armour Steels Under High Strain Rate Compression, Def. Technol. J., 2015, 10, p 334–342

    Article  Google Scholar 

  13. J. Cai, K. Wang, C. Miao, W. Li, W. Wang, and J. Yang, Constitutive Analysis to Predict High Temperature Flow Behavior of BFe10-1-2 Cupronickel Alloy in Consideration of Strain Steel, Mater. Des., 2015, 65, p 272–279

    Article  Google Scholar 

  14. F. Wei and F. Youheng, High Temperature Deformation Behavior and Constitutive Modeling for 20CrMnTiH Steel, Mater. Des., 2014, 57, p 465–471

    Article  Google Scholar 

  15. Z. Yang, F. Zhang, C. Zheng, M. Zhang, B. Lv, and L. Qu, Study on Hot Deformation Behavior and Processing Maps of Low Carbon Bainitic Steel, Mater. Des., 2015, 66, p 258–266

    Article  Google Scholar 

  16. M. Aghaie-Khafri and F. Adhami, Hot Deformation of 15-5 PH Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 1052–1057

    Article  Google Scholar 

  17. G. Liu, Y. Han, Z. Shi, J. Sun, D. Zou, and G. Qiao, Hot Deformation and Optimization of Process Parameters of an As-Cast 6Mo Superaustenitic Stainless Steel: A Study with Processing Map, Mater. Des., 2014, 53, p 662–672

    Article  Google Scholar 

  18. H. Sun, Y. Sun, R. Zhang, M. Wang, R. Tang, and Z. Zhou, Study on Hot Workability and Optimization of Process Parameters of a Modified 310 Austenitic Stainless Steel Using Processing Maps: A Study with Processing Map, Mater. Des., 2015, 67, p 165–172

    Article  Google Scholar 

  19. Y.C. Lin and G. Liu, Effects of Strain on the Workability of a High Strength Low Alloy Steel in Hot Compression, Mater. Sci. Eng. A, 2009, 523, p 139–144

    Article  Google Scholar 

  20. A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 5467–5473

    Article  Google Scholar 

  21. L.L. Wang, R.B. Li, Y.G. Liao, and M. Jin, Study on Characterization of Hot Deformation of 403 Steel, Mater. Sci. Eng. A, 2013, 567, p 84–88

    Article  Google Scholar 

  22. E. Pu, W. Zheng, J. Xiang, Z. Song, and J. Li, Hot Deformation Characteristic and Processing Map of Superaustenitic Stainless Steel S32654, Mater. Sci. Eng. A, 2014, 598, p 174–182

    Article  Google Scholar 

  23. A. Momeni and K. Dehghani, Hot Working Behavior of 2205 Austenite-Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2011, 528, p 1448–1454

    Article  Google Scholar 

  24. Z. Zhang, H. Zhou, X. Liu, S. Li, J. Dong, G. Si, B. Zhang, and S. Yue, Hot Deformation Behaviour and Processing Maps for Coiled Tubing Steel, Mater. Sci. Eng. A, 2013, 565, p 213–218

    Article  Google Scholar 

  25. H. Rastegari, A. Kermanpur, A. Najafizadeh, D. Porter, and M. Somani, Warm Deformation Processing Maps for the Plain Eutectoid Steels, J. Alloys Compd., 2015, 626, p 136–144

    Article  Google Scholar 

  26. Z. Wang, W. Fu, B. Wang, W. Zhang, Z. Lv, and P. Jiang, Study on Hot Deformation Characteristics of 12%Cr Ultra-super-Critical Rotor Steel Using Processing Maps and Zener-Hollomon Parameter, Mater. Charact., 2010, 61, p 25–30

    Article  Google Scholar 

  27. J. Luo, M.Q. Li, Y.G. Liu, and H.M. Sun, The Deformation Behavior in Isothermal Compression of 300M Ultrahigh-Strength Steel, Mater. Sci. Eng. A, 2012, 534, p 314–322

    Article  Google Scholar 

  28. Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank DRDO, India, for providing facilities to carry out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindranadh Bobbili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobbili, R., Madhu, V. An Investigation into Hot Deformation Characteristics and Processing Maps of High-Strength Armor Steel. J. of Materi Eng and Perform 24, 4728–4735 (2015). https://doi.org/10.1007/s11665-015-1796-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1796-3

Keywords

Navigation