Skip to main content
Log in

Effect of Heat Treatment on Microstructure and Hot Impact Toughness of Various Zones of P91 Welded Pipes

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The new generation super critical thermal power plants are required to operate at enhanced thermal efficiency of over 50% to reduce the fuel consumption and environmental pollution. Creep strength-enhanced ferritic steels, commonly known as Cr-Mo alloys such as P91 (X10CrMoVNb 9-1) are such material of choice for the next generation power plants. The operating requirement of these next generation power plants is that steam temperature of around 650 °C is maintained. For such high-temperature application, creep strength of material is the primary consideration together with adequate weld heat-affected zone (HAZ) toughness. Present work deals with the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ. The impact toughness of HAZ for conventional weld groove design and narrow weld groove design has been evaluated experimentally in as-welded and at different post-weld heat treatment conditions. Fractography of the impact toughness specimens of base metal, weld fusion zone, and HAZ was carried out using scanning electron microscope. The effects of heat treatment schemes on the percentage of element present at the fracture surface were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. R. Viswanathan and W.T. Bakker, Materials for Ultra Supercritical Fossil Power Plants (TR-114750), EPRI, Palo Alto, 2000

    Google Scholar 

  2. F. Masuyama, New Development in Steels for Power Generation Boilers, IOM Communication Ltd., London, 1999

    Google Scholar 

  3. V.K. Sikka and P. Patriarca, Analysis of Weldment Mechanical Properties of Modified 9Cr-1Mo steel, ORNL/TM-9045, 1984

  4. M.E. Abd El-Azim, O.H. Ibrahim, and O.E. El-Desoky, Long Term Creep Behaviour of Welded Joints of P91 Steel at 650 °C, Mater. Sci. Eng. A, 2013, 560, p 678–684

    Article  Google Scholar 

  5. V.K. Sikka, C.T. Ward, and C.K. Thomas, Proc. Int. Conf. on Ferritic Steels for High Temperature Applications, A.K. Khare, Ed. (Metals Park, OH), ASM, 1983, p 65–84

  6. B. Arivazhagan and B. kamraj, A Study on Influence of Delta-ferrite on Toughness of P91 Steel Welds, J. Steels Relat. Mater. 2013, p 19–24

  7. M.L. Santell, R.W. Swinderman, R.W. Reed, and J.M. Tanzosh, Martensite Formation in 9Cr-1Mo Steel Weld Metal and Its Effect on Creep Behaviour, ORNL, 2010

  8. T. Maridurai, M.S. Zameeruddin, and S. Biswas, Mechanical Properties and Fracture Characteristic of ASTM A335 P91 Steel Used in Boiler Material, Int. J. ChemTech Res., 2014, 7(2), p 654–665

    Google Scholar 

  9. J.A. Francis, W. Mazur, and H.K.D.H. Badheshia, Type IV Cracking in Ferritic Power Plant Steels, J. Mater. Sci. Technol., 2006, 22(12), p 1387–1395

    Article  Google Scholar 

  10. F. Abe and M. Tabuchi, Microstructure and Creep Strength of Welds in Advance Ferritic Power Plant Steels, J. Sci. Technol. Weld. Join., 2004, 9, p 22–29

    Article  Google Scholar 

  11. P. Mayr and H. Cerjak, The Impact of Welding on Creep Properties of Advanced 9-12% Cr Steels, J. Trans. Indian Inst. Met., 2010, 63, p 131–136

    Article  Google Scholar 

  12. FBTR/33410/1993-Fast Breeder Test Reactor for the Qualification of the Welding Consumables as Proposed by IGCAR, Kalpakkam, 1993

  13. A. Moitra, P. Paramesswaran, P.R. Sreenivasan, and S.L. Mannan, A Toughness Study of Weld Heat Affected Zone of a 9Cr-1Mo Steel, J. Mater. Charact., 2002, 48, p 55–61

    Article  Google Scholar 

  14. Y.C. Jang, J.K. Hong, J.H. Park, D.W. Kim, and Y. Lee, Effect of Notch Position on Charpy Impact Specimen on the Failure Behavior in Heat-Affected Zone, J. Mater. Process. Technol., 2007, 201, p 419–424

    Article  Google Scholar 

  15. B. Silwal, L. Li, A. Deceuster, and B. Griffiths, Effect of Post Weld Heat Treatment on the Toughness of Heat-Affected Zone for Grade 91 Steel, Weld. J., 2013, 92, p 80–87

    Google Scholar 

  16. M.L. Santella, R.W. Swindeman, R.W. Reed, and J.M. Tanzosh, Martensitic Formation in 9Cr-1Mo Steel Weld Metal and Its Effect on Creep Behaviour, Oak Ridge National Laboratory, Oak Ridge, 2012

    Google Scholar 

  17. M. Sireesha, S.K. Albert, and S. Sundaresan, Microstructure and Mechanical Properties of Weld Fusion Zone in Modified 9Cr-1Mo Steel, J. Mater. Eng. Perform., 2001, 10(3), p 320–330

    Article  Google Scholar 

  18. D.P. Singh, M. Sharma, and J.S. Gill, Effect of Post Weld Heat Treatment on the Impact Toughness and Microstructure Property of P-91 Steel Weldment, Inter. J. Res. Mech. Eng. Technol., 2013, 3, p 216–219

    Google Scholar 

  19. B. Arivazhagan, R. Prabhu, S.K. Albert, M. Kamraj, and S. Sundaresan, Microstructure and Mechanical Properties of 9Cr-1Mo Steel Weld Fusion Zones as Function of Weld Metal Composition, J. Mater. Eng. Perform., 2009, 18(8), p 999–1004

    Article  Google Scholar 

  20. V. Homolová, J. Janovec, P. Záhumenský, and A. Výrostková, Influence of Thermal-Deformation History on Evolution of Secondary Phases in P91 Steel, J. Mater. Sci. Eng. A, 2003, 349, p 306–312

    Article  Google Scholar 

  21. M. Yoshino, Y. Mishima, Y. Toda, H. Kushima, K. Sawada, and K. Kimura, Phase Equilibrium Between Austenite and MX Carbonitride in a 9Cr-1Mo-V-Nb Steel, ISIJ Int., 2005, 45(1), p 107–115

    Article  Google Scholar 

  22. ASME Boiler and Pressure Vessel Code, Section IX, New York, 1989

  23. D. Dean and M. Hidekazu, Prediction of Welding Residual Stresses in Multi-pass Butt-Welded Modified 9Cr–1Mo Steel Pipe Considering Phase Transformation Effect, J. Comput. Mater. Sci., 2006, 37, p 209–219

    Article  Google Scholar 

  24. M.A. El-Rahman, A. El-Salam, I. El-Mahallawi, and M.R. El-Koussy, Influence of Heat Input and Post-weld Heat Treatment on Boiler Steel P91 (9Cr-1Mo-V-Nb) Weld Joints, Int. Heat Treatm. Surf. Eng., 2013, 7(1), p 32–37

    Article  Google Scholar 

  25. ASTM A370, Standered Test Methods and Definitions for Mechanical Testing of Steel Products

  26. J. Hald and L. Korcakova, Precipitate Stability in Creep Resistant Ferritic Steels-Experimental Investigation and Modelling, ISIJ Int., 2003, 43, p 420–427

    Article  Google Scholar 

  27. F. Abe, M. Taneike, and K. Sawada, Alloy Design of Creep Resistant 9Cr Steel Using a Dispersion of Nano-sized Carbonitrides, Int. J. Press. Vessels Pip., 2007, 84, p 3–12

    Article  Google Scholar 

  28. S. Paddea, J.A. Francis, A.M. Paradowaska, P.J. Bouchard, and I.A. Shibli, Residual Stress Distribution in P91 Steel—Pipe Girth Weld Before and After Postweld Heat Treatment, J. Mater. Sci. Eng. A, 2012, 534, p 663–672

    Article  Google Scholar 

  29. D.A. Porter and K.E. Esterling, Introduction to the Physical Metallurgy of Welding, 2nd ed., Chapman and Hall, London, 1991

    Google Scholar 

  30. T. Kojima, K. Hayashi, and Y. Kajita, HAZ Softening and Creep Rupture Strength of High Cr Ferritic Steel Weldment, ISIJ Int., 1995, 35, p 1284–1290

    Article  Google Scholar 

  31. M. Divya, C.R. Das, S.K. Albert, S. Goyal, P. Ganesh, R. Kaul, J. Swaminathan, B.S. Murty, L.M. Kukreja, and A.K. Bhaudari, Influence of Welding Process on Type IV Cracking Behavior of P91 Steel, Mater. Sci. Eng. A, 2014, 613, p 148–158

    Article  Google Scholar 

  32. V. Gaffard, A.F. Gourgues-Lorenzon, and J. Besson, High Temperature Creep Flow and Damage Properties of the Weakest area of 9Cr1Mo-NbV Martensitic Steel Weldments, ISIJ Int., 2005, 45, p 1915–1924

    Article  Google Scholar 

  33. C. Pandey and M.M. Mahapatara, Effect of Soaking Temperature and Time on Microstructure and Mechanical Properties of P91 Steel, Proceedings of the 23rd International Conference on Processing and Fabrication of Advanced Materials, IIT Roorkee, 2014

  34. C. Pandey and M.M. Mahapatara, Effect of Long-Term Ageing on the Microstructure and Mechanical Properties of Creep Strength Enhanced Ferritic P91 Steel, Trans. Indian Inst. Met., 2016, doi:10.1007/s12666-015-0826-z

    Google Scholar 

  35. C. Pandey, A. Giri, and M.M. Mahapatra, Effect of Normalizing Temperature on Microstructural Stability and Mechanical Properties of Creep Strength Enhanced Ferritic P91 Steel, Mater. Sci. Eng. A, 2016, 657, p 173–184

    Article  Google Scholar 

  36. C. Pandey, A. Giri, and M.M. Mahapatra, Evolution of Phases in P91 Steel in Various Heat Treatment Condition and Their Effect on Microstructure and Mechanical Properties, Sci. Eng. A, Mater, 2016, doi:10.1016/j.msea.2016.03.132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, C., Mahapatra, M.M. Effect of Heat Treatment on Microstructure and Hot Impact Toughness of Various Zones of P91 Welded Pipes. J. of Materi Eng and Perform 25, 2195–2210 (2016). https://doi.org/10.1007/s11665-016-2064-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2064-x

Keywords

Navigation