Skip to main content
Log in

Characterization of Strain-Induced Precipitation in Inconel 718 Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Inconel 718 presents excellent mechanical properties at high temperatures, as well as good corrosion resistance and weldability. These properties, oriented to satisfy the design requirements of gas turbine components, depend on microstructural features such as grain size and precipitation. In this work, precipitation-temperature-time diagrams have been derived based on a stress relaxation technique and the characterization of precipitates by scanning electron microscopy. By using this methodology, the effect of strain accumulation during processing on the precipitation kinetics can be determined. The results show that the characteristics of precipitation are significantly modified when plastic deformation is applied, and the kinetics are slightly affected by the amount of total plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.C. Reed, The Physical Metallurgy of Nickel and Its Alloys, The Superalloys, Fundamentals and Applications, Cambridge University Press, Cambridge, 2006, p 33–55

    Book  Google Scholar 

  2. C. Slama and M. Abdellaoui, Structural Characterization of Aged Inconel 718, J. Alloys Compd., 2000, 1–2(306), p 277–284

    Article  Google Scholar 

  3. G.A. Zickler, R. Schnitzer, R. Radis, R. Hochfellner, R. Schweins, M. Stockniger, and H. Leitner, Microstructure and Mechanical Properties of the Superalloy ATI, Allvac® 718Plus™, Mater. Sci. Eng. A, 2009, 1–2(523), p 295–303

    Article  Google Scholar 

  4. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Precipitation of the δ-Ni3Nb Phase in Two Nickel Base Superalloys, Metall. Trans. A, 1988, 3(19), p 453–465

    Article  Google Scholar 

  5. C.-M. Kuo, Y.-T. Yang, H.-Y. Bor, C.-N. Wei, and C.-C. Tai, Aging Effects on the Microstructure and Creep Behavior of Inconel 718 Superalloy, Mater. Sci. Eng. A, 2009, 510–511, p 289–294

    Article  Google Scholar 

  6. S. Azadian, L.-Y. Wei, and R. Warren, Delta Phase Precipitation in Inconel 718, Mater. Charact., 2004, 1(53), p 7–16

    Article  Google Scholar 

  7. A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado, High Temperature Deformation of Inconel 718, J. Mater. Process. Technol., 2006, 1(177), p 469–472

    Article  Google Scholar 

  8. S.C. Madeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Microstructural Modeling of Metadynamic Recrystallization in Hot Working of IN 718 Superalloy, Mater. Sci. Eng. A, 2000, 1–2(293), p 198–207

    Article  Google Scholar 

  9. F.-L. Sui, L.-X. Xu, L.-Q. Chen, and X.-H. Liu, Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211, p 433–440

    Article  Google Scholar 

  10. N.K. Park, I.S. Kim, Y.S. Na, and J.T. Yeom, Hot Forging of a Nickel-Base Superalloy, J. Mater. Process. Technol., 2001, 1–3(111), p 98–102

    Article  Google Scholar 

  11. H. Yuan and W.C. Liu, Effect of the δ Phase on the Hot Deformation Behavior of Inconel 718, Mater. Sci. Eng. A, 2005, 1–2(408), p 281–289

    Article  Google Scholar 

  12. Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang, Hot Deformation Behavior of Delta-Processed Superalloy 718, Mater. Sci. Eng. A, 2011, 7–8(528), p 3218–3227

    Article  Google Scholar 

  13. H. Monajati, F. Zarandi, M. Jahazi, and S. Yue, Strain Induced γ′ Precipitation in Nickel Base Superalloy Udimet 720 Using a Stress Relaxation Based Technique, Scripta Mater., 2005, 8(52), p 771–776

    Article  Google Scholar 

  14. F. Saint-Antonin, Essais de relaxation isotherme (Isothermal Relaxation Test), Techniques de l’Ingénieur, M, 1995, 141, p 1–8 [in French]

    Google Scholar 

  15. L.P. Karjalainen, Stress Relaxation Method for Investigation of Softening Kinetics in Hot Deformed Steels, Mater. Sci. Technol., 1995, 6(11), p 557–565

    Article  Google Scholar 

  16. X.D. Lu, J.H. Du, and Q. Deng, High Temperature Structure Stability of GH4169 Superalloy, Mater. Sci. Eng. A, 2013, 1(559), p 623–628

    Article  Google Scholar 

  17. H.Y. Li, Y.H. Kong, G.S. Ghen, L.X. Xie, S.G. Zhu, and X. Sheng, Effect of Different Processing Technologies and Heat Treatments on the Microstructure and Creep Behavior of GH4169 Superalloy, Mater. Sci. Eng. A, 2013, 582, p 368–373

    Article  Google Scholar 

  18. S. Mannan, “Physical Metallurgy of Alloys 718, 725, 725hs, 925 for Service in Aggressive Corrosive Environments”, Special Metals Internal Document, http://www.specialmetals.com/documents, 2014

Download references

Acknowledgments

The authors thank the Spanish “Ministerio de Ciencia en Innovación” for its financial support through the Project PID-560300-2009-11 and Sheyu Shu and Antonio Gámez for their experimental work contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Calvo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo, J., Penalva, M. & Cabrera, J.M. Characterization of Strain-Induced Precipitation in Inconel 718 Superalloy. J. of Materi Eng and Perform 25, 3409–3417 (2016). https://doi.org/10.1007/s11665-016-2154-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2154-9

Keywords

Navigation