Skip to main content
Log in

Effect of Machining on Shear-Zone Microstructure in Ti-15V-3Cr-3Al-3Sn: Conventional and Ultrasonically Assisted Turning

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work systematically studied morphology of nano- and microstructures in primary and secondary shear zones of machining chips produced with two different machining methods: conventional and ultrasonically assisted turning. Electron backscatter diffraction and transmission electron microscopy showed that chips had similar microstructures for both machining techniques. The nanostructure in secondary shear zones was less homogeneous than that in primary shear zones. In addition, a heavily deformed layer was formed in a subsurface of Ti-15V-3Cr-3Al-3Sn work-pieces, replicating the microstructure of secondary shear zones of the machining chips, and elongated nanocrystalline grains in this layer were aligned with a tangential direction of turning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.R. Boyer and R.D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2005, 14, p 681–685

    Article  Google Scholar 

  2. J. Sun and Y.B. Guo, A Comprehensive Experimental Study on Surface Integrity by End Milling Ti-6Al-4V, J. Mater. Process. Technol., 2009, 209, p 4036–4042

    Article  Google Scholar 

  3. C. Brecher, C.J. Rosen, and M. Emonts, Laser-Assisted Milling of Advanced Materials, Phys. Proc., 2010, 5, p 259–272

    Article  Google Scholar 

  4. R. Muhammad, A. Naseer, A. Roy, and V.V. Silberschmidt, Numerical Modelling of Vibration-Assisted Turning of Ti-15333, Proc. CIRP, 2012, 1, p 347–352

    Article  Google Scholar 

  5. A. Maurotto, R. Muhammad, A. Roy, V.I. Babitsky, and V.V. Silberschmidt, Comparing Machinability of Ti-15-3-3-3 and Ni-625 Alloys in Uat, Proc. CIRP, 2012, 1, p 330–335

    Article  Google Scholar 

  6. R. Muhammad, N. Ahmed, A. Roy, and V.V. Silberschmidt, Turning of Advanced Alloys with Vibrating Cutting Tool, Solid State Phenom., 2012, 188, p 277–284

    Article  Google Scholar 

  7. R. Muhammad, M. Demiral, A. Roy, and V.V. Silberschmidt, Modelling the Dynamic Behaviour of Hard-to-Cut Alloys Under Conditions of Vibro-Impact Cutting, J. Phys. Conf. Ser., 2013, 451(1), p 012030

    Article  Google Scholar 

  8. R. Muhammad, A. Roy, and V. V. Silberschmidt, Finite Element Modelling of Conventional and Hybrid Oblique Turning Processes of Titanium Alloy, 14th CIRP Conference on Modelling of Machining Operations, 2013, p 510–515.

  9. R. Muhammad, A. Maurotto, M. Demiral, A. Roy, and V.V. Silberschmidt, Thermally Enhanced Ultrasonically Assisted Machining of Ti Alloy, CIRP J. Manuf. Sci. Technol., 2014, 7, p 159–167

    Article  Google Scholar 

  10. A. Maurotto, R. Muhammad, A. Roy, and V.V. Silberschmidt, Enhanced Ultrasonically Assisted Turning of a β-Titanium Alloy, Ultrasonics, 2013, 53, p 1242–1250

    Article  Google Scholar 

  11. R. Muhammad, A. Maurotto, A. Roy, and V.V. Silberschmidt, Hot Ultrasonically Assisted Turning of β-Ti Alloy, Proc. CIRP, 2012, 1, p 336–341

    Article  Google Scholar 

  12. V.I. Babitsky, A.V. Mitrofanov, and V.V. Silberschmidt, Ultrasonically Assisted Turning of Aviation Materials: Simulations and Experimental Study, Ultrasonics, 2004, 42(1–9), p 81–86

    Article  Google Scholar 

  13. N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, and V.V. Silberschmidt, Analysis of Forces in Ultrasonically Assisted Turning, J. Sound Vib., 2007, 308(3–5), p 845–854

    Article  Google Scholar 

  14. P.-J. Arrazola, A. Garay, L.-M. Iriarte, M. Armendia, and S. Marya, Machinability of Titanium Alloys (Ti6Al4V) and Ti555.3, J. Mater. Process. Technol., 2009, 209, p 2223–2230

    Article  Google Scholar 

  15. A.I.S. Antonialli, A.A.M. de Filho, V.L. Sordi, and M. Ferrante, The Machinability of Ultrafine-Grained Grade 2 Ti Processed by Equal Channel Angular Pressing, J. Mater. Res. Technol., 2012, 1, p 148–153

    Article  Google Scholar 

  16. C. Ohkubo, I. Watanabe, J.P. Ford, H. Nakajima, and T. Tosoi, The Machinability of Cast Titanium and Ti-6Al-4V Alloy, Int. J. Mach. Tool Manuf., 2001, 41, p 1055–1070

    Article  Google Scholar 

  17. J. Barry, G. Byrne, and D. Lennon, Observation of Chip Formation and Acoustic Emission in Machining Ti-6Al-4V Alloy, Int. J. Mach. Tool Manuf., 2001, 41, p 1055–1070

    Article  Google Scholar 

  18. G. Sutter and G. List, Very High Speed Cutting of Ti-6Al-4V Titanium Alloy—Change in Morphology and Mechanism of Chip Formation, Int. J. Mach. Tool Manuf., 2013, 66, p 37–43

    Article  Google Scholar 

  19. J. Hua and R. Shivpuri, Prediction of Chip Morphology and Segmentation During the Machining of Titanium Alloys, J. Mater. Process. Technol., 2004, 150, p 124–133

    Article  Google Scholar 

  20. M.J. Bermingham, S. Palanisamy, D. Kent, and M.S. Dargusch, A Comparison of Cryogenic and High Pressure Emulsion Cooling Technologies on Tool Life and Chip Morphology in Ti-6Al-4V Cutting, J. Mater. Process. Technol., 2012, 212, p 752–765

    Article  Google Scholar 

  21. S. Cedergren, G. Petti, and G. Sjöberg, On the Influence of Work Material Microstructure on Chip Formation, Cutting Forces and Acoustic Emission When Machining Ti-6Al-4V, Proc. CIRP, 2013, 12, p 55–60

    Article  Google Scholar 

  22. S. Sun, M. Brandt, and M.S. Dargusch, Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys, Int. J. Mach. Tool Manuf., 2009, 49, p 561–568

    Article  Google Scholar 

  23. M. Sima and T. Özel, Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti-6Al-4V, Int. J. Mach. Tool Manuf., 2010, 50, p 943–960

    Article  Google Scholar 

  24. M. Calamaz, D. Coupard, and F. Girot, A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti-6Al-4V, Int. J. Mach. Tool Manuf., 2008, 48, p 275–288

    Article  Google Scholar 

  25. A. Molinari, C. Musquar, and G. Sutter, Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modelling, Int. J. Plast, 2002, 18, p 443–459

    Article  Google Scholar 

  26. R. Shivpuri, J. Hua, P. Mittal, A.K. Srivastava, and G.D. Lahoti, Microstructure-Mechanics Interactions in Modelling Chip Segmentation During Titanium Machining, CIRP Ann. Manuf. Technol., 2002, 51, p 71–74

    Article  Google Scholar 

  27. Y. Karpat, Temperature Dependent Flow Softening of Titanium Alloy Ti6Al4V: An Investigation Using Finite Element Simulation of Machining, J. Mater. Process. Technol., 2011, 211, p 737–749

    Article  Google Scholar 

  28. M.P. Groover, Fundamentals of Modern Manufacturing Materials, Processes, and Systems, 3rd ed., Wiley, New York, 2007

    Google Scholar 

  29. M.C. Shaw, Metal Cutting Principle, 2nd ed., Oxford University Press, Oxford, 2005

    Google Scholar 

  30. P. Rokicki, K. Nowag, Z. Spotz, L. Fusova, K. Saksl, R. Ghisleni, and C. Siemers, Microstructural Characteristic of Ti-15V-3Al-3Sn-3Cr Chips, Int. J. Earth Sci., 2010, 55, p 452–456

    Google Scholar 

  31. P. Rokicki, K. Nowag, Z. Spotz, L. Fusova, K. Saksl, R. Ghisleni, C. Siemers, Chip Formation Process of Ti-15V-3Al-3Sn-3Cr Alloy, 19th International Conference on Metallurgy and Materials, vol. METAL, 2010, p 844–849.

  32. X. Zhao, W. Fu, X. Yang, and T.G. Langdon, Microstructure and Properties of Pure Titanium Processed by Equal-Channel Angular Pressing at Room Temperature, Scr. Mater., 2008, 59, p 542–545

    Article  Google Scholar 

  33. U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48(3), p 171–273

    Article  Google Scholar 

  34. Y. Estrin, L.S. Tóth, A. Molinari, and Y. Bréchet, A Dislocation-Based Model for All Hardening Stages in Large Strain Deformation, Acta Mater., 1998, 46(15), p 5509–5522

    Article  Google Scholar 

  35. S. Swaminathan, M. Ravi Shankar, S. Lee, J. Hwang, A.H. King, R.F. Kezar, B.C. Rao, T.L. Brown, S. Chandrasekar, W.D. Compton, and K.P. Trumble, Large Strain Deformation and Ultrafine Grained Materials by Machining, Mat. Sci. Eng. A, 2005, 410–411, p 358–363

    Article  Google Scholar 

  36. W.J. Deng, W. Xia, C. Li, and Y. Tang, Ultrafine Grained Material Produced by Machining, Mater. Manuf. Process., 2010, 25, p 355–359

    Article  Google Scholar 

  37. S.Y. Hong, Y. Ding, and W. Jeong, Friction and Cutting Forces in Cryogenic Machining of Ti-6Al-4V, Int. J. Mach. Tool Manuf., 2001, 41(15), p 2271–2285

    Article  Google Scholar 

  38. V.K. Astashev and V.I. Babitsky, Ultrasonic Cutting as a Nonlinear (Vibro-Impact) Process, Ultrasonics, 1998, 36, p 89–96

    Article  Google Scholar 

  39. B. Langenecker, Effects of Ultrasound on Deformation Characteristics of Metals, IEEE Trans. Sonic Ultrason., 1966, 13, p 12–13

    Article  Google Scholar 

  40. R. Muhammad, M.S. Hussain, A. Maurotto, C. Siemers, A. Roy, and V.V. Silberschmidt, Analysis of a Free Machining α + β Titanium Alloy Using Conventional and Ultrasonically Assisted Turning, J. Mater. Process. Technol., 2014, 214(4), p 906–915

    Article  Google Scholar 

  41. S. To, Y.H. Zhu, and W.B. Lee, Effects of Cutting Depth on the Surface Microstructure of a Zn-Al Alloy During Ultra-Precision Machining, Appl. Surf. Sci., 2008, 254(6), p 1559–1564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Tse, Y.Y., Muhammad, R. et al. Effect of Machining on Shear-Zone Microstructure in Ti-15V-3Cr-3Al-3Sn: Conventional and Ultrasonically Assisted Turning. J. of Materi Eng and Perform 25, 3766–3773 (2016). https://doi.org/10.1007/s11665-016-2209-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2209-y

Keywords

Navigation