Skip to main content
Log in

Effect of Annealing Treatments on the Microstructure and Texture Development in API 5L X60 Microalloyed Pipeline Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effect of annealing treatments at 600, 800, 1000 and 1200 °C on the microstructure, texture, grain boundary characteristic and recrystallization fraction of Nb-microalloyed X60 steel is evaluated by using x-ray diffraction and EBSD techniques. The results indicate that bimodal as-received microstructure is changed to a homogeneous equiaxed grain structure above annealing at 1000 °C. Macro-texture investigations depict that increasing annealing temperature results in considerable variation of texture intensity, especially at 1200 °C. Maximum intensity corresponds to {001}〈310〉, Goss, copper texture components as well as near γ-fiber at 1200 °C. Recrystallization analysis shows that volume fraction of recrystallization noticeably is increased by annealing temperature at 1200 °C. Recrystallized grains are mainly oriented along γ-fiber, especially close to {111}〈112〉 texture component. Moreover, coincidence site lattice (CSL) analysis shows that the effect of annealing temperature on the volume fraction of Σ3 boundary is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.J. DeArdo, Microalloyed Strip Steels for the 21st Century, Mater. Sci. Forum, 1998, 284, p 15–26

    Article  Google Scholar 

  2. M.S. Joo, D.W. Suh, and H.K.D.H. Bhadeshia, Mechanical Anisotropy in Steels for Pipelines, ISIJ Int., 2013, 53(8), p 1305–1314

    Article  Google Scholar 

  3. N. Shikanai, S. Mitao, S. Endo, in Recent Development in Microstructural Control Technologies Through the Thermo-Mechanical Control Process (TMCP) with JFE Steel’s High-Performance Plates. JFE Technical Report, vol 11 (2008), p. 1–6

  4. S. Hasani, M. Shamanian, A. Shafyei, P. Behjati, M. Nezakat, M. Fathi-Moghaddam, and J.A. Szpunar, Influence of Annealing Treatment on Micro/Macro-Texture and Texture Dependent Magnetic Properties in Cold Rolled FeCo–7.15 V Alloy, J. Magn. Magn. Mater., 2015, 378, p 253–260

    Article  Google Scholar 

  5. M. Hölscher, D. Raabe, and K. Lücke, Rolling and Recrystallization Textures of bcc Steels, Steel Res. Int., 1991, 62, p 567–575

    Article  Google Scholar 

  6. E. El-Danaf, M. Baig, A. Almajid, W. Alshalfan, M. Al-Mojil, and S. Al-Shahrani, Mechanical, Microstructure and Texture Characterization of API, X65 Steel, Mater. Des., 2013, 47, p 529–538

    Article  Google Scholar 

  7. M. Sánchez-Araiza, S. Godet, P.J. Jacques, and J.J. Jonas, Texture Evolution During the Recrystallization of a Warm-Rolled Low-Carbon Steel, Acta Mater., 2006, 54, p 3085–3093

    Article  Google Scholar 

  8. M. Arafin and J. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel Through Grain Boundary Character and Crystallographic Texture Studies, Corros. Sci., 2009, 51(1), p 119–128

    Article  Google Scholar 

  9. V. Venegas, F. Caleyo, J.M. Hallen, and T. Baudin, Role of Crystallographic Texture in Hydrogen-Induced Cracking of Low Carbon Steels for Sour Service Piping, Metall. Mater. Trans. A, 2007, 38(5), p 1022–1031

    Article  Google Scholar 

  10. J. Verdeja, J. Asensio, and J. Pero-Sanz, Texture, Formability, Lamellar Tearing and HIC Susceptibility of Ferritic and Low-Carbon HSLA Steels, Mater. Charact., 2003, 50(1), p 81–86

    Article  Google Scholar 

  11. M. Mohtadi-Bonab, J.A. Szpunar, and S. Razavi-Tousi, Hydrogen Induced Cracking Susceptibility in Different Layers of an As-Received X70 Pipeline Steel, Int. J. Hydrogen Energy, 2013, 38(31), p 13831–13841

    Article  Google Scholar 

  12. M. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar, Texture, Local Misorientation, Grain Boundary and Recrystallization Fraction in Pipeline Steels Related to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2015, 620, p 97–106

    Article  Google Scholar 

  13. M.S. Joo, D.W. Suh, J.H. Bae, N. Sanchez Mouriño, R. Petrov, L.A.I. Kestens, and H.K.D.H. Bhadeshia, Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel, Mater. Sci. Eng. A, 2012, 556, p 601–606

    Article  Google Scholar 

  14. C. Zong, G. Zhu, and W. Ma, Effect of Crystallographic Texture on the Anisotropy of Charpy Impact Behavior in Pipeline Steel, Mater. Sci. Eng. A, 2013, 563, p 1–7

    Article  Google Scholar 

  15. V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-Hernández, and J.M. Hallen, On the Role of Crystallographic Texture in Mitigating Hydrogen-Induced Cracking in Pipeline Steels, Corros. Sci., 2011, 53(12), p 4204–4212

    Article  Google Scholar 

  16. R. Shukla, S.K. Ghosh, D. Chakrabarti, and S. Chatterjee, Microstructure, Texture, Property Relationship in Thermo-Mechanically Processed Ultra-Low Carbon Microalloyed Steel for Pipeline Application, Mater. Sci. Eng. A, 2013, 587, p 201–208

    Article  Google Scholar 

  17. R.K. Ray, M.P. Butron-Guillejn, J. Jonas, and G.E. Ruddle, Effect of Controlled Rolling on Texture Development in a Plain Carbon and an Nb Microalloyed Steel, ISIJ Int., 1992, 32(2), p 203–212

    Article  Google Scholar 

  18. G. Baczynski, J. Jonas, and L. Collins, The Influence of Rolling Practice on Notch Toughness and Texture Development in High-Strength Linepipe, Metall. Mater. Trans. A, 1999, 30(12), p 3045–3054

    Article  Google Scholar 

  19. S.M. Anijdan, M. Hoseini, and S. Yue, Texture Development in Cool Deformed Microalloyed Steels, Mater. Sci. Eng. A, 2011, 528(22), p 6788–6793

    Article  Google Scholar 

  20. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, Massachusetts, 1978

    Google Scholar 

  21. R. Jamaati, Annealing Texture of Nanostructured Steel-Based Nanocomposite, J. Mater. Eng. Perform., 2015, 24(8), p 3201–3208

    Article  Google Scholar 

  22. R. Jamaati, Annealing Texture of Nanostructured IF Steel, Mater. Charact., 2015, 106, p 411–419

    Article  Google Scholar 

  23. M. Eskandari, M.A. Mohtadi-Bonab, and J.A. Szpunar, Evolution of the Microstructure and Texture of X70 Pipeline Steel During Cold-Rolling and Annealing Treatments, Mater. Des., 2016, 906, p 18–627

    Google Scholar 

  24. M. Masoumi, H.F. Gomes de Abreu, in Textural Analysis Through Thickness of AP X70 Steel After Hot Rolling and Post Heat Treatment (Brazilian Metallurgical, Materials and Mining Association, Rio de Janeiro, RJ, 2015)

  25. R. Song, D. Ponge, D. Raabe, and R. Kaspar, Microstructure and Crystallographic Texture of an Ultrafine Grained C–Mn Steel and Their Evolution During Warm Deformation and Annealing, Acta Mater., 2005, 53(3), p 845–858

    Article  Google Scholar 

  26. A. Gazder Azdiar, M. Sánchez-Araiza, J.J. Jonas, and Elena V. Pereloma, Evolution of Recrystallization Texture in a 0.78 wt% Cr Extra-Low-Carbon Steel After Warm and Cold Rolling, Acta Mater., 2011, 12, p 4847–4865

    Article  Google Scholar 

  27. E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. Lond. Sect. B, 1951, 64, p 747

    Article  Google Scholar 

  28. N.J. Petch, The Cleavage Strength of Polycristals, J. Iron Steel Inst., 1953, 174, p 25

    Google Scholar 

  29. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004

    Google Scholar 

  30. O. Engler and V. Randle, Introduction to Texture Analysis-Macrotexture, Microtexture, and Orienatation Mapping, 2nd ed., Taylor & Francis Group, New York, 2010

    Google Scholar 

  31. R. Jamaati, M.R. Toroghinejad, M.A. Mohtadi-Bonab, H. Edris, J.A. Szpunar, and M.R. Salmani, Texture Development of ARB-Processed Steel-Based Nanocomposite, J. Mater. Eng. Perform., 2014, 23, p 4436–4445

    Article  Google Scholar 

  32. H.-J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, Elsevier, Amsterdam, 2013

    Google Scholar 

  33. S. Nafisi, M.A. Arafin, L. Collins, and J.A. Szpunar, Texture and Mechanical Properties of API, X100 Steel Manufactured Under Various Thermomechanical Cycles, Mater. Sci. Eng. A, 2012, 531, p 2–11

    Article  Google Scholar 

  34. M.R. Barnett, Role of In-Grain Shear Bands in Nucleation of〈111〉//ND Recrystallization Textures in Warm Rolled Steel, ISIJ Int., 1998, 38(1), p 78–85

    Article  Google Scholar 

  35. Y. Nagataki and Y. Hosoya, Origin of Recrystallization Texture Formation in Interstitial Free Steel, ISIJ Int., 1996, 36(4), p 451–460

    Article  Google Scholar 

  36. M.A. Mohtadi-Bonab, M. Eskandari, K.M.M. Rahman, R. Ouellet, and J.A. Szpunar, An Extensive Study of Hydrogen-Induced Cracking Susceptibility in an API, X60 Sour Service Pipeline Steel, Int. J. Hydrogen Energy, 2016, 41(7), p 4185–4197

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Oxin steel company for support of this project. We also sincerely thank for the support received from Professor Jerzy Szpunar, University of Saskatchewan, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eskandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joodaki, R., Alavi Zaree, S.R., Gheisari, K. et al. Effect of Annealing Treatments on the Microstructure and Texture Development in API 5L X60 Microalloyed Pipeline Steel. J. of Materi Eng and Perform 26, 2003–2013 (2017). https://doi.org/10.1007/s11665-017-2673-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2673-z

Keywords

Navigation