Skip to main content
Log in

Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness \((K_{\text{Ic}} )\) and ductile fracture toughness \((J_{\text{Ic}} )\) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. J.R. Davis & Associates and ASM International, Handbook Committee. Aluminum and Aluminum Alloys, ASM International, Russell, 1993

    Google Scholar 

  2. H.E. Boyer, Quenching and Distortion Control, ASM International, Metals Park, OH, 1998

    Google Scholar 

  3. K. Chandra Sekhar, R. Narayanasamy, and K. Velmanirajan, Experimental Investigations on Microstructure and Formability of Cryorolled AA 5052 Sheets, Mater. Des., 2014, 53, p 1064–1070

    Article  Google Scholar 

  4. Y. Lee, D. Shin, K. Park, and W. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature, Scripta Mater., 2004, 51, p 355–359

    Article  Google Scholar 

  5. D. Singh, P.N. Rao, and R. Jayaganthan, Effect of Deformation Temperature on Mechanical Properties of Ultrafine Grained Al–Mg Alloys Processed by Rolling, Mater. Des., 2013, 50, p 646–655

    Article  Google Scholar 

  6. K.S.V.B.R. Krishna, K. Chandra Sekhar, R. Tejas, N. Naga Krishna, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Effect of Cryorolling on the Mechanical Properties of AA5083 Alloy and the Portevin-Le Chatelier Phenomenon, Mater. Des., 2015, 67, p 107–117

    Article  Google Scholar 

  7. K. Gotoh, K. Murakami, and Y. Noda, Fatigue Crack Growth Behaviour of A5083 Series Aluminium Alloys and Their Welded Joints, J. Mar. Sci. Technol., 2011, 16, p 343–353

    Article  Google Scholar 

  8. T. Zhao, J. Zhang, and Y. Jiang, A Study of Fatigue Crack Growth of 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2008, 30, p 1169–1180

    Google Scholar 

  9. P. Pao, H. Jones, S. Cheng, and C. Feng, Fatigue Crack Propagation in Ultrafine Grained Al–Mg Alloy, Int. J. Fatigue, 2005, 27, p 1164–1169

    Article  Google Scholar 

  10. Z. Jin and P.K. Mallick, Effect of Cold Work on the Tensile and Fatigue Performance of Aluminum Alloy 5754, J. Mater. Eng. Perform., 2006, 15, p 540–548

    Article  Google Scholar 

  11. D. Singh, P. Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20, p 759–769

    Article  Google Scholar 

  12. P. Das, R. Jayaganthan, T. Chowdhury, and I.V. Singh, Improvement of Fracture Toughness (K1c) of 7075 Al Alloy by Cryorolling Process, Mater. Sci. Forum, 2011, 683, p 81–94

    Article  Google Scholar 

  13. T. Yagami, K. Manabe, and T. Miyamoto, Ductile Fracture Behavior of 5052 Aluminum Alloy Sheet Under Cyclic Plastic Deformation at Room Temperature, J. Mater. Process. Technol., 2009, 209, p 1042–1047

    Article  Google Scholar 

  14. F. Ozturk, H. Pekel, and H. Halkaci, The Effect of Strain-Rate Sensitivity on Formability of AA 5754-O at Cold and Warm Temperatures, J. Mater. Eng. Perform., 2011, 20, p 77–81

    Article  Google Scholar 

  15. M. Garware, G.T. Kridli, and P.K. Mallick, Tensile and Fatigue Behavior of Friction-Stir Welded Tailor-Welded Blank of Aluminum Alloy 5754, J. Mater. Eng. Perform., 2010, 19, p 1161–1171

    Article  Google Scholar 

  16. A. Bhandakkar, R.C. Prasad, and S.M.L. Sastry, Fracture Toughness of AA2024 Aluminum Fly Ash Metal Matrix Composites, Int. J. Comput. Mater., 2014, 4, p 108–124

    Google Scholar 

  17. Y. Jia and Y. Bai, Ductile Fracture Prediction for Metal Sheets Using All-Strain-Based Anisotropic eMMC Model, Int. J. Mech. Sci., 2016, 115, p 516–531

    Article  Google Scholar 

  18. H. Li, M. Fu, J. Lu, and H. Yang, Ductile Fracture: Experiments and Computations, Int. J. Plast, 2011, 27, p 147–180

    Article  Google Scholar 

  19. C. Zhang, L. Leotoing, D. Guines, and E. Ragneau, Experimental and Numerical Study on Effect of Forming Rate on AA5086 Sheet Formability, Mater. Sci. Eng. A, 2010, 527, p 967–972

    Article  Google Scholar 

  20. T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng., 1999, 45, p 601–620

    Article  Google Scholar 

  21. N. Moës and T. Belytschko, Extended Finite Element Method for Cohesive Crack Growth, Eng. Fract. Mech., 2002, 69, p 813–833

    Article  Google Scholar 

  22. N. Sukumar, N. Moës, and B. Moran, Extended Finite Element Method for Three-Dimensional Crack Modelling, Int. J. Numer. Methods Eng., 2000, 48, p 1549–1570

    Article  Google Scholar 

  23. E. Giner, N. Sukumar, J. Tarancon, and F. Fuenmayor, An Abaqus Implementation of the Extended Finite Element Method, Eng. Fract. Mech., 2009, 76, p 347–368

    Article  Google Scholar 

  24. P. Das, I.V. Singh, and R. Jayaganthan, An Experimental Evaluation of Material Properties and Fracture Simulation of Cryorolled 7075 Al Alloy, J. Mater. Eng. Perform., 2012, 21, p 1167–1181

    Article  Google Scholar 

  25. ASTM Standard E8/E8 M, 2009, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken PA, 2009

    Google Scholar 

  26. ASTM Standard E23, 2007, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2007

    Google Scholar 

  27. ASTM Standard E92, 2007, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2009

    Google Scholar 

  28. ASTM Standard E399-12, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K 1C of Metallic Material, ASTM International, West Conshohocken PA, 2012

    Google Scholar 

  29. G.A. Clarke, W.R. Andrews, P.C. Paris and D.W. Schmidt, Single specimen tests for JIC determination, Mechanisms of Crack Growth, ASTM STP 590, American Society for Testing and Materials, 1976, p 27–42

  30. J.W. Hutchinson and P.C. Paris, Stability Analysis of J-controlled Crack Growth, Elastic–Plastic Fracture, ASTM STP 668, American Society for Testing and Materials, 1979, p 37–64

  31. J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 1968, 35, p 379–386

    Article  Google Scholar 

  32. ASTM Standard E1820-15, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2015

    Google Scholar 

  33. H. Pathak, A. Singh, I. Singh, and S. Yadav, A Simple and Efficient XFEM Approach for 3-D Cracks Simulations, Int. J. Fract., 2013, 181, p 189–208

    Article  Google Scholar 

  34. W. Ramberg, and W.R.W. Osgood, Description of Stress-strain Curves by Three Parameters. Natl. Advis. Comm. Aeronaut., Technical Note No. 902, 1943.

  35. J. Shi, D. Chopp, J. Lua, N. Sukumar, and T. Belytschkod, Abaqus Implementation of Extended Finite Element Method Using a Level Set Representation for Three-Dimensional Fatigue Crack Growth and Life Predictions, Eng. Fract. Mech., 2010, 77, p 2840–2863

    Article  Google Scholar 

  36. ABAQUS Analysis User’s Manual (Version 6.12), United States of America ABAQUS Inc., 2012

  37. S. Kumar, I.V. Singh, and B.K. Mishra, XFEM Simulation of Stable Crack Growth Using J-R Curve Under Finite Strain Plasticity, Int. J. Mech. Mater. Des., 2014, 10, p 165–177

    Article  Google Scholar 

  38. M. Tajally, Z. Huda, and H. Masjuki, A Comparative Analysis of Tensile and Impact-Toughness Behavior of Cold-Worked and Annealed 7075 Aluminum Alloy, Int. J. Impact Eng, 2010, 37, p 425–432

    Article  Google Scholar 

  39. Z. Yang, An Energy-Based Crack Growth Criterion for Modelling Elastic–Plastic Ductile Fracture, Mech. Res. Commun., 2005, 32, p 514–524

    Article  Google Scholar 

  40. J. Kaufman, Introduction to Aluminum Alloys and Tempers, ASM International, Russell, 2000

    Google Scholar 

  41. R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloydb, and M. Finnb, High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet, Int. J. Impact Eng, 2005, 32, p 541–560

    Article  Google Scholar 

  42. ASTM Standard E647-15, Standard Test Method for Measurement of Fatigue Crack growth Rates, ASTM International, West Conshohocken, PA, 2015

    Google Scholar 

  43. P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic Eng., 1963, 85, p 528–533

    Article  Google Scholar 

  44. B.F. Jogi, P.K. Brahmankar, V.S. Nanda, and R.C. Prasad, Some Studies on Fatigue Crack Growth Rate of Aluminum Alloy 6061, J. Mater. Process. Technol., 2007, 201, p 380–384

    Article  Google Scholar 

  45. S. Cravero and C. Ruggieri, Estimation Procedure of J-resistance Curves for SE (T) Fracture Specimens Using Unloading Compliance, Eng. Fract. Mech., 2007, 74, p 2735–2757

    Article  Google Scholar 

  46. X.K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Eng. Fract. Mech., 2012, 85, p 1–46

    Article  Google Scholar 

  47. S. Goel, N. Kumar, D. Fuloria, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Evaluating Fracture Toughness of Rolled Zircaloy-2 at Different Temperatures Using XFEM, J. Mater. Eng. Perform., 2016, 25, p 4046–4058

    Article  Google Scholar 

  48. C. Menzemer and T. Srivatsan, The Quasi-Static Fracture Behavior of Aluminum Alloy 5083, Mater. Lett., 1999, 38, p 317–320

    Article  Google Scholar 

  49. N. Alexopoulos, Impact Properties of the Aircraft Cast Aluminium Alloy Al-7Si0. 6 Mg (A357), EPJ Web Conf., 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Singh, A. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754. J. of Materi Eng and Perform 26, 4689–4706 (2017). https://doi.org/10.1007/s11665-017-2802-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2802-8

Keywords

Navigation