Skip to main content
Log in

Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Olsson and M. Snis, Duplex—A New Generation of Stainless Steels for Desalination Plants, Desalination, 2007, 205(1–3), p 104–113

    Article  Google Scholar 

  2. E. Taban and E. Kaluc, Welding Behaviour of Duplex and Superduplex Stainless Steels Using Laser and Plasma Arc Welding Processes, Weld. World, 2011, 55(7), p 48–57

    Article  Google Scholar 

  3. Z. Zhang, H. Jing, L. Xu, Y. Han, G. Li, and L. Zhao, Investigation on Microstructure and Impact Toughness of Different Zones in Duplex Stainless Steel Welding Joint, J. Mater. Eng. Perform., 2017, 26(1), p 134–150

    Article  Google Scholar 

  4. A. Kar, G. Balaji, S. Tamang, and S. Aravindan, Mechanical Characterization of Gas Tungsten Arc Welded Super Duplex Stainless Steel Joint, Mater. Res. Innov. (2016). https://doi.org/10.1080/14328917.2016.1265263

    Google Scholar 

  5. M. Vasudevan, Computational and Experimental Studies on Arc Welded Austenitic Stainless Steel, Ph.D. thesis, Indian Institute of Technology, Madras, India, 2007

  6. B. Arivazhagan and M. Vasudevan, A Study of Microstructure and Mechanical Properties of Grade 91 Steel A-TIG Weld Joint, J. Mater. Eng. Perform., 2013, 22(12), p 3708–3716

    Article  Google Scholar 

  7. K.C. Ganesh, K.R. Balasubramanian, M. Vasudevan, P. Vasantharaja, and N. Chandrasekhar, Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints, Metall. Mater. Trans. B, 2016, 47B, p 1347–1362

    Article  Google Scholar 

  8. P. Palanichamy, M. Vasudevan, and T. Jayakumar, Measurement of Residual Stresses in Austenitic Stainless Steel Weld Joints Using an Ultrasonic Technique, Sci. Technol. Weld. Join., 2009, 14(2), p 166–171

    Article  Google Scholar 

  9. P. Vasantharaja, V. Maduraimuthu, M. Vasudevan, and P. Palanichamy, Assessment of Residual Stresses and Distortion in Type 316 LN Stainless Steel Weld Joints, Mater. Manuf. Process., 2012, 27(12), p 1376–1381

    Article  Google Scholar 

  10. N.N. Korra, M. Vasudevan, and K.R. Balasubramanian, Multi-Objective Optimization of Activated Tungsten Inert Gas Welding of Duplex Stainless Steel Using Response Surface Methodology, Int. J. Adv. Manuf. Technol., 2015, 77(1–4), p 67–81

    Article  Google Scholar 

  11. S. Tathgir and A. Bhattacharya, Activated-TIG Welding of Different Steels: Influence of Various Flux and Shielding Gas, Mater Manuf. Process., 2016, 31(3), p 1–23

    Article  Google Scholar 

  12. S. Tathgir, A. Bhattacharya, and T.K. Ber, Influence of Current and Shielding Gas in TiO2 Flux Activated TIG Welding on Different Graded Steels, Mater. Manuf. Process., 2014, 30(9), p 1–25

    Google Scholar 

  13. T. Shyi Chern, K. Hung Tseng, and H. Lung Tsai, Study of the Characteristics of Duplex Stainless Steel Activated Tungsten Inert Gas Welds, Mater. Des., 2011, 32(1), p 255–263

    Article  Google Scholar 

  14. A. Berthier, P. Paillard, and F. Christien, Structural and Chemical Evolution of Super Duplex Stainless Steel on Activated Tungsten Inert Gas Welding Process, Sci. Technol. Weld. Join., 2009, 14(8), p 681–690

    Article  Google Scholar 

  15. L. Wickstrom, G. Hinds, and A. Turnbull, Influence of Weld Preparation Procedure and Heat Tinting on Sulfide Stress Corrosion Cracking of Duplex Stainless Steel, Corros, 2015, 71(8), p 1036–1047

    Article  Google Scholar 

  16. B. Messer, V. Oprea, and A. Wright, Duplex Stainless Steel Welding: Best Practices, Stainl. Steel World, 2007, 12, p 53–63

    Google Scholar 

  17. C.T. Kwok, K.H. Lo, W.K. Chan, Stress Corrosion Cracking of Laser-Welded Stainless Steels, in Proceedings of the Ist International Joint Symposium on Joining and Welding, Osaka, Japan, ed. by H. Fujii (Wood head publishing, Cambridge), 6–8 Nov 2013

  18. A. Bhattacharya and P.M. Singh, Stress Corrosion Cracking of Welded 2205 Duplex Stainless Steel in Sulfide-Containing Caustic Solution, J. Fail. Anal. Prev., 2005, 7(5), p 371–377

    Article  Google Scholar 

  19. T. Prosek, A.L. Gac, D. Thierry, S.L. Manchet, C. Lojewski, A. Fanica, E. Johansson, C. Canderyd, F. Dupoiron, T. Snauwaert, F. Maas, and B. Droesbeke, Low-Temperature Stress Corrosion Cracking of Austenitic and Duplex Stainless Steels Under Chloride Deposits, Corros, 2014, 70(10), p 1052–1063

    Article  Google Scholar 

  20. S.S.M. Tavares, V.G. Silva, J.M. Pardal, and J.S. Corte, Investigation of Stress Corrosion Cracks in a UNS S32750 Superduplex Stainless Steel, Eng. Fail. Anal., 2013, 35, p 88–94

    Article  Google Scholar 

  21. D. Fischer, C. Li, W. Huang, W. Sun, Investigation of the Sulfide Stress Cracking and Stress Corrosion Cracking Behaviors of Duplex and Lean Duplex Stainless Steel Parent and Welded Materials in Sour Service (Conference Paper), in NACE—International Corrosion Conference Series, Vancouver, Canada, vol. 2, pp. 1572–1583, 6–10 Mar 2016

  22. M. Sakata, N. Satake, T. Kiso, U.B. Ofem, Study on Ferrite Content and Hardness of Thick-Wall 22% Cr Duplex Stainless Steel Welded Joints, in NACE—International Corrosion Conference Series, Vancouver, Canada, vol. 4, pp. 2609–2624, 26–30 Mar 2017

  23. M. Vasudevan, Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels, J. Mater. Eng. Perform., 2017, 26(3), p 1325–1336

    Article  Google Scholar 

  24. N.N. Korra, M. Vasudevan, and K.R. Balasubramanian, Optimization of ATIG Welding of Duplex Stainless Steel Alloy 2205 Based on Response Surface Methodology and Experimental Validation, J. Mater. Des. Appl., 2016, 30(4), p 837–846

    Google Scholar 

  25. M. Keskitalo, K. Mäntyjärvi, J. Sundqvist, J. Powell, and A.F.H. Kaplan, Laser Welding of Duplex Stainless Steel with Nitrogen as Shielding Gas, J. Mater. Process. Technol., 2015, 216(2), p 381–384

    Article  Google Scholar 

  26. V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, and S. Sundaresan, Effect of Weld Metal Chemistry and Heat Input on the Structure and Properties of Duplex Stainless Steel Welds, Mater. Sci. Eng. A, 2003, 358(1–2), p 9–16

    Article  Google Scholar 

  27. S. Geng, J. Sun, L. Guo, and H. Wang, Evolution of Microstructure and Corrosion Behavior in 2205 Duplex Stainless Steel GTA-Welding Joint, J. Manuf. Process, 2015, 19(8), p 32–37

    Article  Google Scholar 

  28. R. Nishimura and K. Kudo, Stress Corrosion Cracking of AISI, 304 an AISI, 316 Austenitic Stainless Steels in HCl and H2SO4 Solutions —Prediction of Time-to-Failure and Criterion for Assessment of SCC Susceptibility, Corros, 1989, 45(4), p 308–316

    Article  Google Scholar 

  29. R. Nishimura, A. Sulaiman, and Y. Maeda, Stress Corrosion Cracking Susceptibility of Sensitized Type 316 Stainless Steel in Sulfuric Acid Solution, Corros. Sci., 2003, 45(2), p 465–484

    Article  Google Scholar 

  30. L. Vehovar, A. Vehovar, M.V. Hukovic, and M. Tandler, Investigation into Stress Corrosion Cracking of Stainless Steel Alloyed with Nitrogen, Mater. Corros., 2002, 53(5), p 316–327

    Article  Google Scholar 

  31. O.M. Alyousif and R. Nishimura, The Stress Corrosion Cracking Behavior of Austenitic Stainless Steels in Boiling Magnesium Chloride Solutions, Corros. Sci., 2006, 49(7), p 3040–3051

    Article  Google Scholar 

  32. J.M. Pardala, S.S.M. Tavares, M.P.C. Fonsecaa, J.D. Souzaa, L.M. Vieirab, and H.F.G. Abreuc, Deleterious Phases Precipitation on Superduplex Stainless Steel UNS S32750: Characterization by Light Optical and Scanning Electron Microscopy, Mater. Res, 2010, 13(3), p 401–407

    Article  Google Scholar 

  33. V. Kumar, B. Lucas, D. Howse, G. Melton, S. Raghunathan, L. Vilarinho, Investigation of the A-TIG Mechanism and the Productivity Benefits in TIG Welding, in 15th International Conference on the Joining of Materials (JOM 15) and 6th International Conference on Education in Welding (ICEW 6) Helsingor, Denmark, 3–6 May 2009

  34. R.H. Zhang, J. Pan, and S. Katayama, The Mechanism of Penetration Increase in A-TIG Welding, Front. Mater. Sci., 2011, 5(2), p 109–118

    Article  Google Scholar 

  35. A. Berthier, P. Paillard, M. Carin, S. Pellerin, and F. Valensi, TIG and A-TIG Welding Experimental Investigations and Comparison with Simulation Part 2—Arc Constriction and Arc Temperature, Sci. Technol. Weld. Join., 2012, 17(8), p 616–621

    Article  Google Scholar 

  36. A. Berthier, P. Paillard, M. Carin, F. Valensi, and S. Pellerin, TIG and A-TIG Welding Experimental Investigations and Comparison to Simulation Part 1: Identification of Marangoni Effect, Sci. Technol. Weld. Join., 2012, 17(8), p 609–615

    Article  Google Scholar 

  37. T.J. Donegá, T.F. Costa, R.V. Arencibia, and L.O. Vilarinho, Comparison of Thermal Efficiency Between A-TIG and Conventional TIG Welding, Weld. Inter., 2016, 30(4), p 255–267

    Article  Google Scholar 

  38. P.J. Antony, R.K. Singh Raman, P. Kumar, and R. Raman, Corrosion of 2205 Duplex Stainless Steel Weldment in Chloride Medium Containing Sulfate-Reducing Bacteria, Metall. Mater. Trans. A, 2008, 39A(11), p 2689–2697

    Article  Google Scholar 

  39. A. Corolleur, A. Fanica, and G. Passot, Ferrite Content in the Heat Affected Zone of Duplex Stainless Steels, BHM Bergund Hüttenmännische Monatshefte, 2015, 160(9), p 413–418

    Article  Google Scholar 

  40. H. Sieurin and R. Sandström, Austenite Reformation in the Heat-Affected Zone of Duplex Stainless Steel 2205, Mater. Sci. Eng. A, 2006, 418(1–2), p 250–256

    Article  Google Scholar 

  41. R.A. Cottis and R.C. Newman, Stress corrosion cracking resistance of duplex stainless steels, Corrosion and Protection Centre, Manchester, 1993

    Google Scholar 

  42. H.Y. Liou, R.I. Hsieh, and W.T. Tsai, Microstructure and Stress Corrosion Cracking in Simulated Heat-Affected Zones of Duplex Stainless Steels, Corros. Sci., 2002, 44(12), p 2841–2856

    Article  Google Scholar 

  43. H.-Y. Liou, Y.-T. Pan, R.-I. Hsieh, and W.-T. Tsai, Effects of Alloying Elements on the Mechanical Properties and Corrosion Behaviors of 2205 Duplex Stainless Steels, JMEPEG, 2001, 10, p 231–241

    Article  Google Scholar 

  44. T.G. Gooch, Corrosion Resistance of Welds in Stainless Steel, Weld. J., 1996, 5, p 135s–154s

    Google Scholar 

  45. J. Yang, Q. Wang, Z. Wei, and K. Guan, Weld Failure Analysis of 2205 Duplex Stainless Steel Nozzle, Cas. Stu. Eng. Fail. Anal., 2014, 2(2), p 69–75

    Article  Google Scholar 

  46. C. Örnek, X. Zhong, and D.L. Engelberg, Low-Temperature Environmentally Assisted Cracking of Grade 2205 Duplex Stainless Steel Beneath a MgCl2:FeCl3 Salt Droplet, Corros, 2016, 72(3), p 384–399

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to SSN Trust for their financial support through students internal funding. The authors also wish to place their thanks to The Director, IGCAR for the permission to carryout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Lakshminarayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwin, B., Lakshminarayanan, A.K., Vasudevan, M. et al. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints. J. of Materi Eng and Perform 26, 5825–5836 (2017). https://doi.org/10.1007/s11665-017-3057-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3057-0

Keywords

Navigation