Skip to main content
Log in

Experimental Study on the Hot Deformation Characterization of Low-Carbon Nb-V-Ti Microalloyed Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

X80 steel, as typical low-carbon Nb-V-Ti microalloyed steel, is getting more and more attention in oil and gas transmission pipeline manufacturing. In this paper, the hot deformation behavior of X80 steel has been investigated. Hot compression tests of the steel were conducted under different temperatures and strain rates. Based on the experimental data, the flow stress constitutive equations were established. It is found that the hot deformation activation energy of this steel is higher than C-Mn and low-carbon steel. Then, the kinetics model and grain size model of dynamic recrystallization were developed according to the flow curves and the optical microstructures. In addition, the processing maps were developed to analyze the workability of X80 steel at elevated temperature. The analysis results show that the optimum processing window is at the temperature of 1300-1473 K and the strain rate of 0.01-10 s−1. The microstructure observation indicates that the optimum processing parameters are applicable to the tested steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759

    Article  Google Scholar 

  2. A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari, The Prediction of Hot Deformation Behavior in Fe-21Mn-2.5Si-1.5Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng., A, 2012, 554, p 72–78

    Article  Google Scholar 

  3. E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, and D. Chicot, An Experimental Analysis and Modeling of the Work-Softening Transient Due to Dynamic Recrystallization, Int. J. Plast, 2014, 54, p 113–131

    Article  Google Scholar 

  4. G. Zhou, H. Ding, F. Cao, and B. Zhang, A Comparative Study of Various Flow in Stability Criteria in Processing Map of Superalloy GH4742, J. Mater. Sci. Technol., 2014, 30, p 217–222

    Article  Google Scholar 

  5. Y. Zhang, Z. Chai, Alex A. Volinsky, H.L. Sun, B.H. Tian, P. Liu, and Y. Liu, Hot Deformation Characteristics and Processing Maps of the Cu-Cr-Zr-Ag Alloy, J. Mater. Eng. Perform., 2016, 25, p 1191–1198

    Article  Google Scholar 

  6. D.X. Wen, Y.C. Lin, J. Chen, J. Deng, X.M. Chen, J.L. Zhang, and M. He, Effects of Initial Aging Time on Processing Map and Microstructures of Anickel-Based Superalloy, Mater. Sci. Eng., A, 2015, 620, p 319–332

    Article  Google Scholar 

  7. S.K. Rajput, G.P. Chaudhari, and S.K. Nath, Physical Simulation of Hot Deformation of Low-Carbon Ti-Nb Microalloyed Steel and Microstructural Studies, J. Mater. Eng. Perform., 2014, 23, p 2930–2942

    Article  Google Scholar 

  8. C. Zhang, L.W. Zhang, W.F. Shen, C.R. Liu, Y.N. Xia, and R.Q. Li, Study on Constitutive Modeling and Processing Maps for Hot Deformation of Medium Carbon Cr-Ni-Mo Alloyed Steel, Mater. Des., 2016, 90, p 804–814

    Article  Google Scholar 

  9. Z.W. Cai, F.X. Chen, F.J. Ma, and J.Q. Guo, Dynamic Recrystallization Behavior and Hot Workability of AZ41 M Magnesium Alloy During Hot Deformation, J. Alloys Compd., 2016, 670, p 55–63

    Article  Google Scholar 

  10. T. Niu, Y.L. Kang, H.W. Gu, Y.Q. Yin, M.L. Qiao, and J.X. Jiang, Effect of Nb on the Dynamic Recrystallization Behavior of High-Grade Pipeline Steels, Int. J. Miner. Metall. Mater., 2010, 17, p 742–747

    Article  Google Scholar 

  11. G.Y. Qiao, F.R. Xiao, X.B. Zhang, Y.B. Cao, and B. Liao, Effects of Contents of Nb and C on Hot Deformation Behaviors of High Nb X80 Pipeline Steels, Trans. Nonferr. Met. Soc. China, 2009, 19, p 1395–1399

    Article  Google Scholar 

  12. A. AlShahrani, N. Yazdipour, A. Dehghan-Manshadi, A.A. Gazder, C. Cayron, and E.V. Perelom, The Effect of Processing Parameters on the Dynamic Recrystallisation Behaviour of API-X70 Pipeline Steel, Mater. Sci. Eng., A, 2013, 570, p 70–81

    Article  Google Scholar 

  13. Y.W. Xu, D. Tang, Y. Song, and X.G. Pan, Dynamic Recrystallization Kinetics Model of X70 Pipeline Steel, Mater. Des., 2012, 39, p 168–174

    Article  Google Scholar 

  14. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Dynamic and Static Recrystallization Behavior of Low Carbon High Niobium Microalloyed Steel, J. Iron. Steel Res. Int., 2011, 18(1), p 55–60

    Article  Google Scholar 

  15. H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Constitutive Relationships for Hot Deformation of Austenite, Acta Mater., 2011, 59, p 6441–6448

    Article  Google Scholar 

  16. H.L. Wei, G.Q. Liu, H.T. Zhao, and M.H. Zhang, Effect of Carbon Content on Hot Deformation Behaviors of Vanadium Microalloyed Steels, Mater. Sci. Eng., A, 2014, 596, p 112–120

    Article  Google Scholar 

  17. H.L. Wei and G.Q. Liu, Effect of Nb and C on the Hot Flow Behavior of Nb Microalloyed Steels, Mater. Des., 2014, 56, p 437–444

    Article  Google Scholar 

  18. H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot Working Characteristics of Steels in Austenitic State, J. Mater. Process. Technol., 1995, 53, p 293–310

    Article  Google Scholar 

  19. B.C. Zhao, T. Zhao, G.Y. Li, and Q. Lu, The Kinetics of Dynamic Recrystallization of a Low Carbon Vanadium-Nitride Microalloyed Steel, Mater. Sci. Eng., A, 2014, 604, p 117–121

    Article  Google Scholar 

  20. S.-H. Cho, K.-B. Kang, and J.J. Jonas, The Dynamic, Static and Metadynamic Recrystallization of a Nb-Microalloyed Steel, ISIJ Int., 2001, 41(1), p 63–69

    Article  Google Scholar 

  21. S.Q. Bao, G. Zhao, C.B. Yu, Q.M. Chang, C.L. Ye, and X.P. Mao, Recrystallization Behavior of a Nb-Microalloyed Steel During Hot Compression, Appl. Math. Model., 2011, 35, p 3268–3275

    Article  Google Scholar 

  22. E.I. Poliak and J.J. Joans, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136

    Article  Google Scholar 

  23. E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 684–691

    Article  Google Scholar 

  24. H.B. Zhang, K.F. Zhang, S.S. Jiang, and Z. Lu, The Dynamic Recrystallization Evolution and Kinetics of Ni-18.3Cr-6.4Co-5.9 W-4Mo-2.19Al-1.16Ti Superalloy During Hot Deformation, J. Mater. Res., 2015, 30(7), p 1029–1041

    Article  Google Scholar 

  25. L. Chen, Y.J. Zhang, F. Li, X.G. Liu, B.F. Guo, and M. Jin, Modeling of Dynamic Recrystallization Behavior of 21Cr-11Ni-N-RE Lean Austenitic Heat-Resistant Steel During Hot Deformation, Mater. Sci. Eng., A, 2016, 663, p 141–150

    Article  Google Scholar 

  26. H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot Deformation Behavior of a Medium Carbon Microalloyed Steel, Mater. Sci. Eng., A, 2011, 528, p 3876–3882

    Article  Google Scholar 

  27. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756

    Article  Google Scholar 

  28. M. Shaban and B. Eghbali, Determination of Critical Conditions for Dynamic Recrystallization of a Microalloyed Steel, Mater. Sci. Eng., A, 2010, 527, p 4320–4325

    Article  Google Scholar 

  29. M.H. Wang, Y.F. Li, W.H. Wang, J. Zhou, and A. Chiba, Quantitative Analysis of Work Hardening and Dynamic Softening Behavior of Low Carbon Alloy Steel Based on the Flow Stress, Mater. Des., 2013, 45, p 384–392

    Article  Google Scholar 

  30. M. ElWahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado, Effect of Initial Grain Size on Dynamic Recrystallization In High Purity Austenitic Stainless Steels, Acta Mater., 2005, 53, p 4605–4612

    Article  Google Scholar 

  31. L.F. Nie, L.W. Zhang, Z. Zhu, and W. Xu, Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Solution and Aging FGH96 Superalloy, J. Mater. Eng. Perform., 2013, 22, p 3728–3734

    Article  Google Scholar 

  32. Y.V.R.K. Prasad and S. Sasidhara, Hot working Guide: A Compendium of Processing Maps, ASM, Novelty, 1997

    Google Scholar 

  33. Z.N. Yang, F.C. Zhang, C.L. Zheng, M. Zhang, B. Lv, and L. Qu, Study on Hot Deformation Behaviour and Processing Maps of Low Carbon Bainitic Steel, Mater. Des., 2015, 66, p 258–266

    Article  Google Scholar 

  34. Z.B. Xiao, Y.C. Huang, and Y. Liu, Plastic Deformation Behaviour and Processing Maps of 35CrMo Steel, J. Mater. Eng. Perform., 2016, 25, p 1219–1227

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51604058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Zhang, C., Zhang, L. et al. Experimental Study on the Hot Deformation Characterization of Low-Carbon Nb-V-Ti Microalloyed Steel. J. of Materi Eng and Perform 27, 4616–4624 (2018). https://doi.org/10.1007/s11665-018-3594-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3594-1

Keywords

Navigation