Skip to main content
Log in

A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

MELD, previously known as additive friction stir, is an emerging solid-state process that enables additive manufacturing of a broad range of metals and metal matrix composites. Here, we discuss its potential for fabricating aluminum matrix composites by showing examples of Al-SiC, Al 6061-Mo, and Al 6061-W composites. Thanks to its solid-state nature, MELD is uniquely suited for the use of high-strength aluminum alloys as matrix material, which would suffer from hot cracking problems in liquid-state processes. Using complementary characterization tools, we show that this process results in aluminum matrix composites with no observed porosity and homogeneous particle distribution. These properties stem from the extensive material flow and mixing during the deposition process. In addition to the high quality of produced composites, its ease of use, versatility of feed materials, and scalability all make MELD an attractive tool for additive manufacturing of aluminum matrix composites. We also discuss the limitations of MELD for composite fabrication, with issues related to maximum reinforcement loading, tool wear, and in-plane resolution. Finally, we compare the benefits and limitations of MELD with other composite fabrication processes such as powder bed fusion, friction stir processing, stir casting, and powder processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.D. Rosen and B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, New York, 2015

    Google Scholar 

  2. S. Kumar and J.P. Kruth, Composites by Rapid Prototyping Technology, Mater. Des., 2010, 31, p 850–856

    Article  Google Scholar 

  3. J. Gonzalez, J. Mireles, Y. Lin, and R. Wicker, Characterization of Ceramic Components Fabricated Using Binder Jetting Additive Manufacturing Technology, Ceram. Int., 2016, 42(9), p 10559–10564

    Article  Google Scholar 

  4. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges, Appl. Phys. Rev., 2015, 2(4), p 041304

    Article  Google Scholar 

  5. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic Components—Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224

    Article  Google Scholar 

  6. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315–360

    Article  Google Scholar 

  7. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928

    Article  Google Scholar 

  8. N. Chawla and K. Chawla, Metal Matrix Composites, Springer, New York, 2013

    Book  Google Scholar 

  9. T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993

    Book  Google Scholar 

  10. S. Suresh, A. Mortensen, and A. Needleman, Fundamentals of Metal Matrix Composites, Butterworh/Heinemann, London, 1993

    Google Scholar 

  11. A. Mortensen and J. Llorca, Metal Matrix Composites, Annu. Rev. Mater. Res., 2010, 40, p 243–270

    Article  Google Scholar 

  12. M. Surappa, Aluminum Matrix Composites: Challenges and Opportunities, Sadhana, 2003, 28(1–2), p 319–334

    Article  Google Scholar 

  13. N. Chawla and Y.L. Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p 357–429

    Article  Google Scholar 

  14. J.M. Torralba, C.E. da Costa, and F. Velasco, P/M Aluminum Matrix Composites: An Overview, J. Mater. Process. Tech., 2003, 133(1–2), p 203–206

    Article  Google Scholar 

  15. M.D. Huda, M.S.J. Hashmi, and M.A. El-Baradie, MMCs: Materials, Manufacturing and Mechanical Properties, Key Eng. Mater., 1995, 104–107, p 37–64

    Article  Google Scholar 

  16. D. Das, P. Mishra, S. Singh, and R. Thakur, Properties of Ceramic-Reinforced Aluminum Matrix Composites—A Review, Int. J. Mech. Mater. Eng., 2014, 9(12), p 6

    Article  Google Scholar 

  17. D. Gu, Laser Additive Manufacturing of High-Performance Materials, Springer, New York, 2015

    Book  Google Scholar 

  18. X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, and J.P. Kruth, Selective Laser Melting of Nano-TiB2 Decorated AlSi10Mg Alloy with High Fracture Strength and Ductility, Acta Mater., 2017, 129, p 183–193

    Article  Google Scholar 

  19. T. Sercombe and X. Li, Selective Laser Melting of Aluminium and Aluminium Metal Matrix Composites: Review, Mater. Technol., 2016, 31, p 77–85

    Google Scholar 

  20. S.K. Ghosh and P. Saha, Crack and Wear Behavior of SiC Particulate Reinforced Aluminium Based Metal Matrix Composite Fabricated by Direct Metal Laser Sintering Process, Mater. Des., 2011, 32, p 139–145

    Article  Google Scholar 

  21. H.Z. Yu, M.E. Jones, G.W. Brady, R.J. Griffiths, D. Garcia, H.A. Rauch, C.D. Cox, and N. Hardwick, Non-Beam-Based Metal Additive Manufacturing Enabled by Additive Friction Stir Deposition, Scr. Mater., 2018, 153, p 122–130

    Article  Google Scholar 

  22. MELD Brochure—Aeroprobe Corporation, 2018. http://www.aeroprobe.com/meld/

  23. J.P. Schultz and K.D. Creehan, Friction Stir Fabrication, 2014, US 8893954 B2

  24. J.P. Schultz and K.D. Creehan, Fabrication Tools for Exerting Normal Forces on Feedstock, 2017, US 9205578 B2

  25. J. Schneider, R. Beshears, and A. Nunes, Interfacial Sticking and Slipping in the Friction Stir Welding Process, Mater. Sci. Eng. A, 2006, 435–436, p 297–304

    Article  Google Scholar 

  26. O. Rivera, P. Allison, J. Jordon, O. Rodriguez, L. Brewer, Z. McClelland, W. Whittington, D. Francis, J. Su, R. Martens, and N. Hardwick, Microstructures and Mechanical Behavior of Inconel 625 Fabricated by Solid-State Additive Manufacturing, Mater. Sci. Eng. A, 2017, 694, p 1–9

    Article  Google Scholar 

  27. F.J. Humphreys, G.S. Rohrer, and A. Rollett, Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Amsterdam, 2017

    Google Scholar 

  28. C. Nikou, A.C. Likas, and N.P. Galatsanos, A Bayesian Framework for Image Segmentation With Spatially Varying Mixtures, IEEE T. Image Process., 2010, 19, p 2278–2289

    Article  Google Scholar 

  29. L. Babout, E. Maire, J. Buffière, and R. Fougères, Characterization by X-Ray Computed Tomography of Decohesion, Porosity Growth and Coalescence in Model Metal Matrix Composites, Acta Mater., 2001, 49(11), p 2055–2063

    Article  Google Scholar 

  30. P. Rohatgi, S. Alaraj, R. Thakkar, and A. Daoud, Variation in Fatigue Properties of Cast A359-SiC Composites Under Total Strain Controlled Conditions: Effects of Porosity and Inclusions, Compos. Part A Appl. Sci. Manuf., 2007, 38(8), p 1829–1841

    Article  Google Scholar 

  31. J. Hashim, L. Looney, and M. Hashmi, Metal Matrix Composites: Production by the Stir Casting Method, J. Mater. Process. Tech., 1999, 92–93, p 1–7

    Article  Google Scholar 

  32. J. Narciso, C. García-Cordovilla, and E. Louis, Reactivity of Thermally Oxidized and Unoxidized SiC Particulates with Aluminium-Silicon Alloys, Mater. Sci. Eng. B, 1992, 15, p 148–155

    Article  Google Scholar 

  33. S. Ahmad, J. Hashim, and M. Ghazali, The Effects of Porosity on Mechanical Properties of Cast Discontinuous Reinforced Metal-Matrix Composite, J. Compos. Mater., 2005, 39(5), p 451–466

    Article  Google Scholar 

  34. V. Umasankar, M. Anthony Xavior, and S. Karthikeyan, Experimental Evaluation of the Influence of Processing Parameters on the Mechanical Properties of SiC Particle Reinforced AA6061 Aluminium Alloy Matrix Composite by Powder Processing, J. Alloy Compd., 2014, 582, p 380–386

    Article  Google Scholar 

  35. E. Ghasali, R. Yazdani-rad, K. Asadian, and T. Ebadzadeh, Production of Al-SiC-TiC Hybrid Composites Using Pure and 1056 Aluminium Powders Prepared Through Microwave and Conventional Heating Methods, J. Alloy Compd., 2017, 690, p 512–518

    Article  Google Scholar 

  36. T.L. Burnett, R. Kelley, B. Winiarski, L. Contreras, M. Daly, A. Gholinia, M.G. Burke, and P.J. Withers, Large Volume Serial Section Tomography by Xe Plasma FIB Dual Beam Microscopy, Ultramicroscopy, 2016, 161, p P119–P129

    Article  Google Scholar 

  37. Y. Li, K.T. Ramesh, and E.S.C. Chin, The Mechanical Response of an A359/SiCp MMC and the A359 Aluminum Matrix to Dynamic Shearing Deformations, Mater. Sci. Eng. A, 2004, 382(1–2), p 162–170

    Article  Google Scholar 

  38. D. Zhang, K. Sugio, K. Sakai, and H. Fukushima, Effect of Volume Fraction on the Flow Behaviour of Al-Sic Composites Considering Spatial Distribution of Delaminated Particles, Mater. Trans., 2008, 49, p 661–670

    Article  Google Scholar 

  39. C. Nan and D. Clarke, The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites, Acta Mater., 1996, 44(9), p 3801–3811

    Article  Google Scholar 

  40. A. Simchi and D. Godlinski, Effect of SiC Particles on the Laser Sintering of Al–7Si–0.3Mg Alloy, Scr. Mater., 2008, 59, p 199–202

    Article  Google Scholar 

  41. A. Kong and R. Soar, Fabrication of Metal–Matrix Composites and Adaptive Composites Using Ultrasonic Consolidation Process, Mater. Sci. Eng. A, 2005, 412(1–2), p 12–18

    Article  Google Scholar 

  42. Lawrence E. Murr, Sara M. Gaytan, Diana A. Ramirez, Edwin Martinez, Jennifer Hernandez, Krista N. Amato, Patrick W. Shindo, Francisco R. Medina, and Ryan B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol., 2012, 28, p p1–14

    Article  Google Scholar 

  43. D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E.P Ambrosio, S. Biamino, D. Ugues, M. Pavese, and P. Fino, Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs), Chapter 1, Light Metal Alloy Application, IntechOpen, 2014, p 3–34. https://www.intechopen.com/books/light-metal-alloys-applications

  44. A. Basak and S. Das, Epitaxy and Microstructure Evolution in Metal Additive Manufacturing, Annu. Rev. Mater. Res., 2016, 46, p 125

    Article  Google Scholar 

  45. J. Gockel and J. Beuth, Understanding Ti-6Al-4V Microstructure Control in Additive Manufacturing via Process Maps, In Proceedings of the Solid Freeform Fabrication Symposium (2013) pp. 666–674

  46. R.R. Dehoff and S.S. Babu, Characterization of Interfacial Microstructures in 3003 Aluminum Alloy Blocks Fabricated by Ultrasonic Additive Manufacturing, Acta Mater., 2010, 58(13), p 4305–4315

    Article  Google Scholar 

  47. H.T. Fujii, S. Shimizu, Y.S. Sato, and H. Kokawa, High-Strain-Rate Deformation in Ultrasonic Additive Manufacturing, Scr. Mater., 2017, 135, p 125–129

    Article  Google Scholar 

  48. J. Li, T. Monaghan, T.T. Nguyen, R.W. Kay, R.J. Friel, and R.A. Harris, Multifunctional Metal Matrix Composites with Embedded Printed Electrical Materials Fabricated by Ultrasonic Additive Manufacturing, Compos. Part B Eng., 2017, 113, p 342–354

    Article  Google Scholar 

  49. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng., 2005, 50, p 1–78

    Article  Google Scholar 

  50. R.S. Mishra, Z.Y. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341, p 307–310

    Article  Google Scholar 

  51. H.S. Arora, H. Singh, and B.K. Dhindaw, Composite Fabrication Using Friction Stir Processing—A Review, Int. J. Adv. Manuf. Technol., 2011, 61, p 1043–1055

    Article  Google Scholar 

  52. V. Sharma, U. Prakash, and B.V.M. Kumar, Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 2015, 224, p 117–134

    Article  Google Scholar 

  53. S. Sahraeinejad, H. Izadi, M. Haghshenas, and A. Gerlich, Fabrication of Metal Matrix Composites by Friction Stir Processing with Different Particles and Processing Parameters, Mater. Sci. Eng. A, 2015, 626, p 505–513

    Article  Google Scholar 

  54. M. Rahsepar and H. Jarahimoghadam, The Influence of Multipass Friction Stir Processing on the Corrosion Behavior and Mechanical Properties of Zircon-Reinforced Al Metal Matrix Composites, Mater. Sci. Eng. A, 2016, 671, p 214–220

    Article  Google Scholar 

  55. S. Arab, S. Karimi, S. Jahromi, S. Javadpour, and S. Zebarjad, Fabrication of Novel Fiber Reinforced Aluminum Composites by Friction Stir Processing, Mater. Sci. Eng. A, 2015, 632, p 50–57

    Article  Google Scholar 

  56. W. Wang, Q. Shi, P. Liu, H. Li, and T. Li, A Novel Way to Produce Bulk SiCp Reinforced Aluminum Metal Matrix Composites by Friction Stir Processing, J. Mater. Process. Tech., 2009, 209(4), p 2099–2103

    Article  Google Scholar 

  57. A. Dolatkhah, P. Golbabaei, M. Besharati Givi, and F. Molaiekiya, Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated via Friction Stir Processing, Mater. Des., 2012, 37, p 458–464

    Article  Google Scholar 

  58. J.Q. Su, T.W. Nelson, and C.J. Sterling, Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys, Scr. Mater., 2005, 52, p 135–140

    Article  Google Scholar 

  59. S. Prabu, L. Karunamoorthy, S. Kathiresan, and B. Mohan, Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite, J. Mater. Process. Tech., 2006, 171(2), p 268–273

    Article  Google Scholar 

Download references

Acknowledgments

MEJP would like to acknowledge the support from the Charles Blankenship Engineering Scholarship. HZY would like to acknowledge the support from the Department of Materials Science and Engineering and College of Engineering at Virginia Tech.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Z. Yu.

Additional information

This article is an invited paper selected from presentations at the symposium “Non-Beam-based Additive Manufacturing Approaches for Metallic Parts,” held during MS&T’17, October 8–12, 2017, in Pittsburgh, PA, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffiths, R.J., Perry, M.E.J., Sietins, J.M. et al. A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD. J. of Materi Eng and Perform 28, 648–656 (2019). https://doi.org/10.1007/s11665-018-3649-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3649-3

Keywords

Navigation