Skip to main content
Log in

Studies on Bio-acceptability of Thermo-Mechanically Processed Mg-4Li-0.5Ca Alloy and Its Microstructural Correlation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

In this study, in vitro corrosion behavior of rolled Mg-4Li-0.5Ca (wt.%) alloy at three temperatures (250, 300 and 350 °C) with 75% reduction and subsequent short annealing at 200 °C for 10 min was systematically investigated. Microstructural evaluation, Mg2Ca precipitation and defects like twins were characterized by an optical microscope, scanning electron microscope and x-ray diffraction. Micrographs reveal an increase in grain size and comparatively reduction in twins density population with an increase in hot rolling temperature and subsequent short annealing. In vitro corrosion tests like dynamic bio-corrosion immersion test, hydrogen evolution test and electrochemical linear polarization test were carried out in simulated body fluid. From in vitro corrosion tests, it is observed that the alloy rolled at 350 °C and subsequently short-annealed shows better bio-corrosion resistance than other hot-rolled and short-annealed alloys. This is due to low twins density and uniformly dispersed Mg2Ca compound throughout the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27(9), p 1728–1734

    Article  CAS  Google Scholar 

  2. H.S. Brar, M.O. Platt, M. Sarntinoranont, P.I. Martin, and M.V. Manuel, Magnesium as a Biodegradable and Bioabsorbable Material for Medical Implants, JOM, 2009, 61, p 31–34

    Article  CAS  Google Scholar 

  3. Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R Rep., 2015, 87, p 1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  4. J. Vormann, Magnesium: Nutrition and Metabolism, Mol. Aspects Med., 2003, 24(1-3), p 27–37

    Article  CAS  Google Scholar 

  5. N. Li and Y. Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review, J. Mater. Sci. Technol., 2013, 29(6), p 489–502. https://doi.org/10.1016/j.jmst.2013.02.005

    Article  CAS  Google Scholar 

  6. R. Zeng, W. Dietzel, F. Witte, N. Hort, and C. Blawert, Progress and Challenge for Magnesium Alloys as Biomaterials, Adv. Eng. Mater., 2008, 10(8), p 3–14

    Article  Google Scholar 

  7. H. Wang, Y. Estrin, H. Fu, G. Song, and Z. Zúberová, The Effect of Pre-Processing and Grain Structure on the Bio-Corrosion and Fatigue Resistance of Magnesium Alloy AZ31, Adv. Eng. Mater., 2007, 9(11), p 967–972

    Article  Google Scholar 

  8. S.E. Harandi, M. Mirshahi, S. Koleini, M.H. Idris, H. Jafari, and M.R.A. Kadir, Effect of Calcium Content on the Microstructure, Hardness and In-Vitro Corrosion Behavior of Biodegradable Mg-Ca Binary Alloy, Mater. Res., 2013, 16(1), p 11–18

    Article  CAS  Google Scholar 

  9. H. Han, Y. Minghui, H. Seok, J. Byun, P. Cha, S. Yang, and Y. Chan, The Modification of Microstructure to Improve the Biodegradation and Mechanical Properties of a Biodegradable Mg Alloy, J. Mech. Behav. Biomed. Mater., 2013, 20, p 54–60. https://doi.org/10.1016/j.jmbbm.2012.12.007

    Article  CAS  Google Scholar 

  10. C. Liu, Y. Xin, G. Tang, and P.K. Chu, Influence of Heat Treatment on Degradation Behavior of Bio-Degradable Die-Cast AZ63 Magnesium Alloy in Simulated Body Fluid, Mater. Sci. Eng., A, 2007, 456(1-2), p 350–357

    Article  Google Scholar 

  11. Z. Chun-yan, Z. Rong-chang, L. Cheng-long, and G. Jia-cheng, Surface & Coatings Technology Comparison of Calcium Phosphate Coatings on Mg-Al and Mg-Ca Alloys and Their Corrosion Behavior in Hank’s Solution, Surf. Coat. Technol., 2010, 204(21-22), p 3636–3640. https://doi.org/10.1016/j.surfcoat.2010.04.038

    Article  CAS  Google Scholar 

  12. X.N. Gu and Y.F. Zheng, A Review on Magnesium Alloys as Biodegradable Materials, Front. Mater. Sci. Chin., 2010, 4(2), p 111–115

    Article  Google Scholar 

  13. S.S. Nene, B.P. Kashyap, N. Prabhu, Y. Estrin, and T. Al-Samman, Biocorrosion and Biodegradation Behavior of Ultralight Mg-4Li-1Ca (LC41) Alloy in Simulated Body Fluid for Degradable Implant Applications, J. Mater. Sci., 2015, 50, p 3041–3050

    Article  CAS  Google Scholar 

  14. R.C. Zeng, X.X. Sun, Y.W. Song, F. Zhang, S.Q. Li, H.Z. Cui, and E.H. Han, Influence of Solution Temperature on Corrosion Resistance of Zn-Ca Phosphate Conversion Coating on Biomedical Mg-Li-Ca Alloys, Trans. Nonferrous Met. Soc. China (Engl. Ed.), 2013, 23(11), p 3293–3299

    Article  CAS  Google Scholar 

  15. Y. Yang, X. Peng, H. Wen, B. Zheng, Y. Zhou, W. Xie, and E.J. Lavernia, Influence of Extrusion on the Microstructure and Mechanical Behavior of Mg-9Li-3Al-XSr Alloys, Metall. Mater. Trans. A, 2013, 44(2), p 1101–1113

    Article  CAS  Google Scholar 

  16. Y. Liu, Y. Wu, D. Bian, S. Gao, S. Leeflang, H. Guo, Y. Zheng, and J. Zhou, Study on the Mg-Li-Zn Ternary Alloy System with Improved Mechanical Properties, Good Degradation Performance and Different Responses to Cells, Acta Biomater., 2017, 62, p 418–433. https://doi.org/10.1016/j.actbio.2017.08.021

    Article  CAS  Google Scholar 

  17. J.R. Geddes, S. Burgess, K. Hawton, K. Jamison, and G.M. Goodwin, Long-Term Lithium Therapy for Bipolar Disorder: Systematic Review and Meta-Analysis of Randomized Controlled Trials, Am. J. Psychiatry, 2004, 161(2), p 217–222. https://doi.org/10.1176/appi.ajp.161.2.217

    Article  Google Scholar 

  18. B. Julian and A. Zeff, Of Chronic Cluster Headaches, Brit. J. Psychiatry, 1978, 133, p 556–559

    Article  Google Scholar 

  19. Y. Zhou, L. Bian, G. Chen, L. Wang, and W. Liang, Influence of Ca Addition on Microstructural Evolution and Mechanical Properties of Near-Eutectic Mg-Li Alloys by Copper-Mold Suction Casting, J. Alloy. Compd., 2016, 664, p 85–91. https://doi.org/10.1016/j.jallcom.2015.12.198

    Article  CAS  Google Scholar 

  20. M. Salahshoor and Y. Guo, Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance, Materials, 2012, 5, p 135–155

    Article  CAS  Google Scholar 

  21. W. Kim, J. Kim, J. Lee, and H. Seok, Influence of Ca on the Corrosion Properties of Magnesium for, Biomaterials, 2008, 62, p 4146–4148

    CAS  Google Scholar 

  22. Z. Li, X. Gu, S. Lou, and Y. Zheng, The Development of Binary Mg- Ca Alloys for Use as Biodegradable Materials Within, Bone, 2008, 29, p 1329–1344

    CAS  Google Scholar 

  23. Y.C. Li, M.H. Li, W.Y. Hu, P.D. Hodgson, and C.E. Wen, Biodegradable Mg-Ca and Mg-Ca-Y Alloys for Regenerative Medicine, Mater. Sci. Forum, 2010, 654-656, p 2192–2195. https://doi.org/10.4028/www.scientific.net/MSF.654-656.2192

    Article  CAS  Google Scholar 

  24. Y. Wan, G. Xiong, H. Luo, F. He, Y. Huang, and X. Zhou, Preparation and Characterization of a New Biomedical Magnesium-Calcium Alloy, Mater. Des., 2008, 29, p 2034–2037

    Article  CAS  Google Scholar 

  25. S. Koleini, M.H. Idris, and H. Jafari, Influence of Hot Rolling Parameters on Microstructure and Biodegradability of Mg-1Ca Alloy in Simulated Body Fluid, Mater. Des., 2012, 33(1), p 20–25. https://doi.org/10.1016/j.matdes.2011.06.063

    Article  CAS  Google Scholar 

  26. H. Wang, Y. Estrin, and Z. Zúberová, Bio-Corrosion of a Magnesium Alloy with Different Processing Histories, Mater. Lett., 2008, 62(16), p 2476–2479

    Article  CAS  Google Scholar 

  27. N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52(2), p 589–594

    Article  CAS  Google Scholar 

  28. Y.C. Liu, D.B. Liu, Y. Zhao, and M.F. Chen, Corrosion Degradation Behavior of Mg-Ca Alloy with High Ca Content in SBF, Trans. Nonferrous Met. Soc. China (Engl. Ed.), 2015, 25, p 3339–3347

    Article  CAS  Google Scholar 

  29. B.E. Warren, X-Ray Studies of Deformed Metals, Prog. Met. Phys., 1959, 8, p 147

    Article  CAS  Google Scholar 

  30. A.M. Vora, Stacking Fault Energy in Some Single Crystals, J. Semicond., 2011, https://doi.org/10.1088/1674-4926/33/6/062001

    Article  Google Scholar 

  31. M.Z. Bian and K.S. Shin, 1012 Twinning Behavior in Magnesium Single Crystal, Met. Mater. Int., 2013, 19(5), p 999–1004

    Article  CAS  Google Scholar 

  32. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915

    Article  CAS  Google Scholar 

  33. G.-L. Song, Corrosion of Magnesium Alloys, Corros. Magnes. Alloys, 2011, https://doi.org/10.1533/9780857091413.2.117

    Article  Google Scholar 

  34. T. Al-Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng., A, 2008, 490(1-2), p 411–420

    Article  Google Scholar 

  35. A. Chapuis and J.H. Driver, Temperature Dependency of Slip and Twinning in Plane Strain Compressed Magnesium Single Crystals, Acta Mater., 2011, 59(5), p 1986–1994

    Article  CAS  Google Scholar 

  36. S. Nene, B.P. Kashyap, N. Prabhu, T. Al-Samman, and Y. Estrin, Effect of Rolling on Microstructure and Room Temperature Tensile Properties of Newly Developed Mg-4Li-1Ca Alloy, Adv. Mater. Res., 2014, 922, p 537–542. https://doi.org/10.4028/www.scientific.net/AMR.922.537

    Article  CAS  Google Scholar 

  37. N.T. Kirkland, N. Birbilis, J. Walker, T. Woodfield, G.J. Dias, and M.P. Staiger, In-Vitro Dissolution of Magnesium-Calcium Binary Alloys : Clarifying the Unique Role of Calcium Additions in Bioresorbable Magnesium Implant Alloys, J. Biomed. Mater. Res. B Appl. Biomater., 2010, 95, p 91–100

    Article  Google Scholar 

  38. T. Kokubo, Formation of Biologically Active Bone-Like Apatite on Metals and Polymers by a Biomimetic Process, Thermochim. Acta, 1996, 280-281(SPEC. ISS.), p 479–490

    Article  Google Scholar 

  39. L. Jonášová, F.A. Müller, A. Helebrant, J. Strnad, and P. Greil, Biomimetic Apatite Formation on Chemically Treated Titanium, Biomaterials, 2004, 25(7-8), p 1187–1194

    Article  Google Scholar 

  40. W. Zhou, T. Shen, and N.N. Aung, Effect of Heat Treatment on Corrosion Behaviour of Magnesium Alloy AZ91D in Simulated Body Fluid, Corros. Sci., 2010, 52(3), p 1035–1041. https://doi.org/10.1016/j.corsci.2009.11.030

    Article  CAS  Google Scholar 

  41. H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, and E. Hamzah, Mechanical and Bio-Corrosion Properties of Quaternary Mg-Ca-Mn-Zn Alloys Compared with Binary Mg-Ca Alloys, Mater. Des., 2014, 53, p 283–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, National Institute of Technology, Tiruchirappalli, Tamilnadu, India, for giving permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriraman, N., Kumaran, S. Studies on Bio-acceptability of Thermo-Mechanically Processed Mg-4Li-0.5Ca Alloy and Its Microstructural Correlation. J. of Materi Eng and Perform 27, 6458–6467 (2018). https://doi.org/10.1007/s11665-018-3709-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3709-8

Keywords

Navigation