Skip to main content
Log in

Role of Precipitates in Recrystallization Mechanisms of Nb-Mo Microalloyed Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Recrystallization behavior of a Nb-Mo microalloyed steel has been investigated using double-hit compression tests. A suitable reheating temperature and soaking time were established for the complete dissolution of the microalloying precipitates prior to hot deformation. The influence of hot deformation conditions on the flow behavior and the effect of alloying elements, Nb in particular, on austenite recrystallization kinetics are highlighted. The strain-induced precipitation has been found to play an important role in hindering recrystallization kinetics. Post-deformation microstructural analysis indicates that strain-induced grain boundary migration (SIMB) is one of the mechanisms for the formation of recrystallized grains. Retardation of recrystallization has been explained by estimating pinning force of Nb(C, N) precipitates and recrystallization driving force at 1000 °C, which is in good agreement with the experimental observations in the present study as well as other reported data. The study brings out a better understanding on the influence of strain-induced precipitates on recrystallization behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Gladman, The physical metallurgy of microalloyed steels, The institute of materials, The University Press, London, 1997

    Google Scholar 

  2. P. Zhao and J.D. Boyd, Microstructure Property Relationships in Thermomechanically Processed Microalloyed Medium Carbon Steels, Mater. Sci. Technol., 2004, 20(6), p 695–704

    Article  Google Scholar 

  3. F.J. Perosanz, B. Lopez, and I. Gutierrez, Combined Effect of Nb and Ti on the Recrystallisation Behaviour of Some HSLA Steels, Mater. Sci. Forum, 1998, 284–286, p 167–174

    Article  Google Scholar 

  4. A. Kojima, Y. Watanabe, Y. Terada, A. Yoshie, and H. Tamehiro, Ferrite Grain Refinement by Large Reduction Per Pass in Non-recrystallization Temperature Region of Austenite, ISIJ Int., 1996, 36, p 603–610

    Article  CAS  Google Scholar 

  5. G.K. Mandal, S. Kumar, T. Kumar, and V.C. Srivastava, Hot Deformation Behaviour of a Nb-Mo Linepipe Steel, Trans. IIM, 2017, 70(7), p 1943–1951

    CAS  Google Scholar 

  6. A. Iza-Mendia, D. Jorge Badiola, and I. Gutierrez, Tensile Work Hardening Modeling of Precipitation Strengthened Nb-Microalloyed Steels, Mater. Metall. Trans. A, 2017, 48A, p 2943–2948

    Article  Google Scholar 

  7. C.M. Sellars and G.J. Davies, Hot Working and Forming Processes, Metals Society, London, 1980, p 3

    Google Scholar 

  8. J.G. Speer and S.S. Hansen, Austenite Recrystallization and Carbonitride Precipitation in Niobium Microalloyed Steels, Mater. Metall. Trans. A, 1989, 20, p 25–38

    Article  Google Scholar 

  9. S.F. Medina, A. Quispe, P. Valles, and J.L. Banos, Recrystallization–Precipitation Interaction Study of Two Medium Carbon Niobium Microalloyed Steels, ISIJ Int., 1999, 39, p 913–922

    Article  CAS  Google Scholar 

  10. C. Klinkenberg, K. Hulka, and W. Bleck, Niobium Carbide Precipitation in Microalloyed Steel, Steel Res., 2004, 75, p 744–752

    Article  CAS  Google Scholar 

  11. I. Weiss and J.J. Jonas, Interaction Between Recrystallization and Precipitation During the High Temperature Deformation of HSLA Steels, Metall. Trans. A, 1979, 10A, p 831–840

    Article  CAS  Google Scholar 

  12. W.J. Liu and J.J. Jonas, A Stress Relaxation Method for Following Carbonitride Precipitation in Austenite At Hot Working Temperatures, Metall. Trans. A, 1988, 9A, p 1403–1413

    Article  Google Scholar 

  13. B. Pereda, A.I. Fernandez, B. Lopez, and J.M. Rodriguez-Ibabe, Effect of Mo on Dynamic Recrystallization Behavior of Nb-Mo Microalloyed Steels, ISIJ Int., 2007, 47, p 860–868

    Article  CAS  Google Scholar 

  14. M.G. Akben, B. Bacroix, and J.J. Jonas, Effect of Vanadium and Molybdenum Addition on High Temperature Recovery, Recrystallization and Precipitation Behavior of Niobium-Based Microalloyed Steels, Acta Metall., 1983, 31, p 161–174

    Article  CAS  Google Scholar 

  15. G. Qiao, F. Xiao, X. Zhang, Y. Cao, and B. Liao, Effects of Contents of Nb and C on Hot Deformation Behaviors of High Nb X80 Pipeline Steels, Trans. Nonferr. Met. Soc. China, 2009, 19, p 1395–1399

    Article  CAS  Google Scholar 

  16. V.B. Ginzburg, Steel-Rolling Technology: Theory and Practice, Marcel Dekker Inc, New York City, 1989, p 454–462

    Book  Google Scholar 

  17. T. Tanaka, Science and Technology of Hot Rolling Process of Steel, in Proceedings of the International Conference on “Microalloying 95”, Pittsburgh, Published by ISS, 1995, pp. 165–181.

  18. B. Mirzakhani, M.T. Salehi, S. Khoddam, S.H. Seyedein, and M.R. Aboutalebi, Investigation of Dynamic and Static Recrystallization Behavior During Thermomechanical Processing in a API-X70 Microalloyed Steel, J. Mater. Eng. Perform., 2009, 18, p 1029–1034

    Article  CAS  Google Scholar 

  19. A.I. Fernandez, B. Lopez, and J.M. Rodriguez, Relationship Between the Austenite Recrystallized Fraction and the Softening Measured From the Interrupted Torsion Test Technique, Scr. Mater., 1999, 40(5), p 543–549

    Article  CAS  Google Scholar 

  20. S. Bao, G. Zhao, C. Yu, Q. Chang, C. Ye, and X. Mao, Recrystallization Behavior of a Nb-Microalloyed Steel During Hot Compression, Appl. Math. Model., 2011, 35, p 3268–3275

    Article  Google Scholar 

  21. S.F. Medina and J.E. Mancilla, Static Recrystallization Modelling of Hot Deformed Steels Containing Several Alloying Elements, ISIJ Int., 1996, 36(8), p 1070–1076

    Article  CAS  Google Scholar 

  22. E.J. Palmiere, C.I. Garcia, and A.J. DeArdo, The Influence of Niobium Supersaturation in Austenite on the Static Recrystallization Behavior of Low Carbon Microalloyed Steels, Metall. Mater. Trans. A, 1996, 27A, p 951–960

    Article  CAS  Google Scholar 

  23. G.R. Ebrahimi, A. Momeni, and H. Eskandari, Interaction Between Precipitation and Dynamic Recrystallization in HSLA-100 Microalloyed Steel, Iran. J. Mater. Form., 2015, 2(1), p 43–50

    Google Scholar 

  24. F.B. El Hassani, A. Chenaoui, R. Dkiouak, L. Elbakkali, and A. Al Omar, Characterization of Deformation Stability of Medium Carbon Microalloyed Steel During Hot Forging Using Phenomenological and Continuum Criteria, J. Mater. Process. Technol., 2008, 199, p 140–149

    Article  Google Scholar 

  25. T. Sakuma and R.W.K. Honeycombe, Effect of Manganese on Microstructure of an Isothermally Transformed Fe-Nb-C Alloy, Mater. Sci. Technol., 1985, 1(5), p 351–356

    Article  CAS  Google Scholar 

  26. B. Mirzakhani, T.M. Salehi, S. Khoddam, H.S. Seyedein, and R.M. Aboutalebi, Investigation of Dynamic and Static Recrystallization Behavior During Thermomechanical Processing in a API-X70 Microalloyed Steel, J. Mater. Eng. Perform., 2008, 18(8), p 1029–1034

    Article  Google Scholar 

  27. S. Vervynckt, K. Verbeken, P. Thibaux, and Y. Houbaert, Recrystallization–Precipitation Interaction During Austenite Hot Deformation of a Nb Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 5519–5528

    Article  CAS  Google Scholar 

  28. O. Kwon and A.J. DeArdo, Interactions Between Recrystallization and Precipitation in Hot-Deformed Microalloyed Steels, Acta Metall. Mater., 1991, 39(4), p 529–538

    Article  CAS  Google Scholar 

  29. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207

    Article  CAS  Google Scholar 

  30. B. Pereda, J.M. Rodriguez-Ibabe, and B. Lopez, Improved Model of Kinetics of Strain Induced Precipitation and Microstructure Evolution of Nb Microalloyed Steels During Multipass Rolling, ISIJ Int., 2008, 48(10), p 1457–1466

    Article  CAS  Google Scholar 

  31. L.N. Pussegoda, P.D. Hodgson, and J.J. Jonas, Design of Dynamic Recrystallisation Controlled Rolling Schedules for Seamless Tube Rolling, Mater. Sci. Technol., 1992, 8(1), p 63–71

    Article  CAS  Google Scholar 

  32. E.V. Pereloma, B.R. Crawford, and P.D. Hodgson, Strain-Induced Precipitation Behaviour in Hot Rolled Strip Steel, Mater. Sci. Eng. A, 2001, 299, p 27–37

    Article  Google Scholar 

  33. J.C. Herman, B. Donnay, and V. Leroy, Precipitation Kinetics of Microalloying Additions During Hot-Rolling of HSLA Steels, ISIJ Int., 1992, 32, p 779–785

    Article  CAS  Google Scholar 

  34. B. Dutta and C.M. Sellars, Effect of Composition and Process Variables on Nb(C, N) Precipitation in Niobium Microalloyed Austenite, Mater. Sci. Technol., 1987, 3(3), p 197–206

    Article  CAS  Google Scholar 

  35. E.J. Palmiere, C.I. Garcia, and A.J. DeArdo, Compositional and Microstructural Changes Which Attend Reheating and Grain Coarsening in Steels Containing Niobium, Metall. Mater. Trans. A, 1994, 25A, p 277–286

    Article  CAS  Google Scholar 

  36. M.Y. Seok, I.C. Choi, Y. Zhao, D.H. Lee, J.A. Lee, and J. Jang, Microalloying Effect on the Activation Energy of Hot Deformation, Steel Res. Int., 2014, 85(9999), p 1–4

    Google Scholar 

  37. A. Al Shahrani, N. Yazdipour, A. Dehghan-Manshadi, A.A. Gazder, C. Cayron, and E.V. Pereloma, The Effect of Processing Parameters on the Dynamic Recrystallisation Behaviour of API-X70 Pipeline Steel, Mater. Sci. Eng. A, 2013, 570, p 70–81

    Article  CAS  Google Scholar 

  38. R. Lino, L.G.L. Guadanini, L.B. Silva, J.G.C. Netoa, and R. Barbosa, Effect of Nb and Ti Addition on Activation Energy for Austenite Hot Deformation, J. Mater. Res. Technol., 2018, https://doi.org/10.1016/j.jmrt.2017.11.002

    Article  Google Scholar 

  39. D.S. Martin, F.G. Caballero, C. Capdevila, and C.G. de Andres, Austenite Grain Coarsening Under the Influence of Niobium Carbonitrides, Mater. Trans., 2004, 45(9), p 2797–2804

    Article  Google Scholar 

  40. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Oxford, 1995, p 69

    Google Scholar 

  41. H.S. Zurob, C.R. Hutchinson, Y. Brechet, and G. Purdy, A Model for the Competition of Precipitation and Recrystallization in Deformed Austenite, Acta Mater., 2001, 49, p 4183–4190

    Article  CAS  Google Scholar 

  42. L. Backe, Modeling the Effect of Solute Drag on Recovery and Recrystallization During Hot Deformation of Nb Microalloyed Steels, ISIJ Int., 2010, 50(2), p 239–247

    Article  Google Scholar 

  43. B. Dutta, E. Valdes, and C.M. Sellars, Mechanism and Kinetics of Strain Induced Precipitation of Nb(C, N) in Austenite, Acta Metall. Mater., 1992, 40, p 653–662

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopi K. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, G.K., Das, S.S., Kumar, T. et al. Role of Precipitates in Recrystallization Mechanisms of Nb-Mo Microalloyed Steel. J. of Materi Eng and Perform 27, 6748–6757 (2018). https://doi.org/10.1007/s11665-018-3711-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3711-1

Keywords

Navigation