Skip to main content
Log in

Understanding the Mechanism of Dynamic Recrystallization During High-Temperature Deformation in Nb-1Zr-0.1C Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present investigation, a systematic study of the evolution of microstructure and crystallographic texture during hot deformation of Nb-1Zr-0.1C was carried out in the temperature range 1773-1973 K (1500-1700 °C) at different strain rates of 0.001, 0.01 and 0.1 s−1. The aim was to examine the mechanisms of dynamic recovery and recrystallization in a high-temperature range. A detailed microstructural analysis of the deformed samples was performed using the electron backscatter diffraction technique to study the occurrence and nature of various dynamic restoration processes; the different regimes of dynamic recovery and recrystallization were identified. The orientations of the dynamically recrystallized grains were found to be (001) <uvw>.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Begley, D. Harrod, R. Gold, High Temperature Creep and Fracture Behavior of the Refractory Metals, in Refractory Metal Alloys Metallurgy and Technology. (Springer, 1968), pp. 41-83.

  2. R. Buckman, Jr, and R. Begley, Development of High Strength Tantalum Base Alloys, Westinghouse Electric Corp, Pittsburgh, PA, 1970

    Book  Google Scholar 

  3. J. Lemberg and R. Ritchie, Mo-Si-B Alloys for Ultrahigh-Temperature Structural Applications, Adv. Mater., 2012, 24(26), p 3445–3480

    Article  CAS  Google Scholar 

  4. D. Mazey and C. English, Role of Refractory Metal Alloys in Fusion Reactor Applications, J. Less Common Met., 1984, 100, p 385–427

    Article  CAS  Google Scholar 

  5. F. Ostermann, Controlling Carbide Dispersions in Niobium-Base Alloys, J. Less Common Met., 1971, 25(3), p 243–256

    Article  CAS  Google Scholar 

  6. S. Primig et al., On the Recrystallization Behavior of Technically Pure Molybdenum, Int. J. Refract Met. Hard Mater., 2010, 28(6), p 703–708

    Article  CAS  Google Scholar 

  7. V.S. Sarma et al., Recrystallisation Texture and Magnetisation Behaviour of Some FCC Ni-W Alloys, Scr. Mater., 2004, 50(7), p 953–957

    Article  CAS  Google Scholar 

  8. J.H. Schneibel, E.J. Felderman, and E.K. Ohriner, Mechanical Properties of Ternary Molybdenum–Rhenium Alloys at Room Temperature and 1700 K, Scr. Mater., 2008, 59(2), p 131–134

    Article  CAS  Google Scholar 

  9. Y. Tang and X. Guo, High Temperature Deformation Behavior of an Optimized Nb–Si Based Ultrahigh Temperature Alloy, Scr. Mater., 2016, 116, p 16–20

    Article  CAS  Google Scholar 

  10. B. Lubarsky, L.I. Shure, Applications of Power Systems to Specific Missions, NASA Technical Report (Document ID:19670000948), 1966

  11. T. Moss, R. Davies, and G. Barna, Refractory-Alloy Requirements for Space Power Systems, National Aeronautics and Space Administration, Cleveland, OH, 1970

    Book  Google Scholar 

  12. R.H. Titran and M. Uz, Effects of Thermomechanical Processing on Tensile and Long-Time Creep Behavior of Nb-1% Zr-01% C Sheet, National Aeronautics and Space Administration, Cleveland, OH, 1994

    Book  Google Scholar 

  13. R.L. Cummings, R.L. Davies, R.E. English, T.P. Moffitt, Potassium Rankine Systems Technology, NASA Technical Report (Document ID: 19670000946), 1966

  14. G.P. Dix, S.S. Voss, Pied Piper: A Historical Overview of the US Space Power Reactor Program, in Space Nuclear Power Systems 1984: Proceedings, vol. 1 (1985)

  15. L. Rosenblum, Liquid Metals for Aerospace Electric-Power Systems, JOM, 1963, 15(9), p 637–641

    Article  CAS  Google Scholar 

  16. J. Semmel, Refractory Metals in Space Electric Power Conversion Systems, in Refractory Metal Alloys Metallurgy and Technology. (Springer, 1968), pp. 289-324

  17. A. Korotayev et al., Nature of Secondary Phases and Mechanism of Rupture in a Niobium-Zirconium-Carbon Alloy, Phys. Met. Metall., 1981, 52(2), p 128–135

    Google Scholar 

  18. R.H. Titran, Long-Time Creep Behavior of Nb-1Zr Alloy Containing Carbon, NASA Technical Report (Document ID: 19870016784), 1986

  19. R.H. Titran, Creep Strength of Niobium Alloys, Nb-1% Zr and PWC-11, National Aeronautics and Space Administration, Cleveland, OH, 1990

    Google Scholar 

  20. R.H. Titran, W.D. Klopp, Long-Time Creep Behavior of the Niobium Alloy C-103, NASA Technical Report (Report Number: NASA-TP-1727, E-224), 1980

  21. R.H. Titran, T. Moore, T. Grobstein, Creep Properties of PWC-11 Base Metal and Weldments as Affected by Heat Treatment, NASA Technical Report (Report Number: NASA-TP-1727, E-224), 1986

  22. R.H. Titran, M. Uz, Effects of Thermomechanical Processing on the Microstructure and Mechanical Properties of Nb-1Zr-C Alloys, NASA Technical Report (Report Number: NASA-TM-107207, NAS 1.15:107207, E-10220), 1996

  23. Uz, M. and R. Titran, Effects of Processing and Prolonged High Temperature Exposure on the Microstructure of Nb-1Zr-C Sheet. MRS Online Proc. Libr. Arch. 322 (1993).

  24. M. Uz, R.H. Titran, Thermal Stability of the Microstructure of an Aged Nb-Zr-C Alloy, in AIP Conference Proceedings (AIP, 1991)

  25. I. Dulera and R. Sinha, High Temperature Reactors, J. Nucl. Mater., 2008, 383(1–2), p 183–188

    Article  CAS  Google Scholar 

  26. D. Farkas and A. Mukherjee, Creep Behavior and Microstructural Correlation of a Particle-Strengthened Nb-1Zr-0.1C Alloy, J. Mater. Res., 1996, 11(9), p 2198–2205

    Article  CAS  Google Scholar 

  27. D. Farkas and A. Mukherjee, Stress Cycle Testing During Creep of a Particle-Strengthened Nb-1Zr-0.1C Alloy, Mater. Sci. Eng. A, 1997, 1(222), p 21–27

    Article  Google Scholar 

  28. B. Vishwanadh et al., Development of Nb-1% Zr-0.1% C Alloy as Structural Components for High Temperature Reactors, J. Nucl. Mater., 2012, 427(1–3), p 350–358

    Article  CAS  Google Scholar 

  29. A. Chaudhuri et al., Microstructural Features of Hot Deformed Nb-1Zr-0.1C Alloy, JOM, 2014, 66(9), p 1923–1929

    Article  CAS  Google Scholar 

  30. A. Sarkar et al., Hot Deformation Behavior of Nb-1Zr-0.1C Alloy in the Temperature Range 700-1700 °C, J. Nucl. Mater., 2012, 422(1–3), p 1–7

    Article  CAS  Google Scholar 

  31. J. Chakravartty, et al. Dynamic Recrystallization in Zirconium Alloys, in Zirconium in the Nuclear Industry: 16th International Symposium. (ASTM International, 2012)

  32. A. Marchattiwar et al., Dynamic Recrystallization During Hot Deformation of 304 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2013, 22(8), p 2168–2175

    CAS  Google Scholar 

  33. A. Sarkar et al., Creep Behavior of Hydrogenated Zirconium Alloys, J. Mater. Eng. Perform., 2014, 23(10), p 3649–3656

    Article  CAS  Google Scholar 

  34. A. Sarkar and J. Chakravartty, Hot Deformation Behavior of Zr-1Nb Alloy: Characterization by Processing Map, J. Nucl. Mater., 2013, 440(1), p 136–142

    Article  CAS  Google Scholar 

  35. A. Sarkar et al., Kinetics of Dynamic Recrystallization in Cobalt: A Study Using the Avrami Relation, Physica Status Solidi (A), 2011, 208(4), p 814–818

    Article  CAS  Google Scholar 

  36. A. Sarkar, J. Chakravartty, and I. Samajdar, The Avrami Kinetics of Dynamic Recrystallization in Cadmium, Metall. Mater. Trans. A, 2010, 41(10), p 2466–2470

    Article  Google Scholar 

  37. A. Sarkar et al., Kinetics of Dynamic Recrystallization in Ti-Modified 15Cr-15Ni-2Mo Austenitic Stainless Steel, J. Nucl. Mater., 2013, 432(1–3), p 9–15

    Article  CAS  Google Scholar 

  38. T. Sakai and J.J. Jonas, Overview no. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32(2), p 189–209

    Article  CAS  Google Scholar 

  39. A. Chaudhuri et al., Hot Deformation Behaviour of Mo-TZM and Understanding the Restoration Processes Involved, Acta Mater., 2019, 164, p 153–164

    Article  CAS  Google Scholar 

  40. A. Chaudhuri, A. Sarkar, and S. Suwas, Investigation of Stress–Strain Response, Microstructure and Texture of Hot Deformed Pure Molybdenum, Int. J. Refract Metal. Hard Mater., 2018, 73, p 168–182

    Article  CAS  Google Scholar 

  41. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2012

    Google Scholar 

  42. W.P. Sun and E.B. Hawbolt, Comparison Between Static and Metadynamic Recrystallization-an Application to the Hot Rolling of Steels, ISIJ Int, 1997, 37(10), p 1000–1009

    Article  CAS  Google Scholar 

  43. R.M. Ahmadabadi et al., Dynamic Recrystallization Behavior of AISI, 422 Stainless Steel During Hot Deformation Processes, J. Mater. Eng. Perform., 2018, 27(2), p 560–571

    Article  CAS  Google Scholar 

  44. S. Du, S. Chen, and J. Song, Dynamic Recrystallization Kinetics and Microstructural Evolution for LZ50 Steel During Hot Deformation, J. Mater. Eng. Perform., 2016, 25(9), p 3646–3655

    Article  CAS  Google Scholar 

  45. S. He et al., Effect of Deformation Temperature on Dynamic Recrystallization and CSL Grain Boundary Distribution of Fe-36% Ni Invar Alloy, J. Mater. Eng. Perform., 2018, 27, p 2759–2765

    Article  CAS  Google Scholar 

  46. Z. Huang et al., Dynamic Recrystallization Behavior and Texture Evolution of NiAl Intermetallic During Hot Deformation, J. Mater. Eng. Perform., 2017, 26(5), p 2377–2387

    Article  CAS  Google Scholar 

  47. R. Kapoor, G.B. Reddy, and A. Sarkar, Discontinuous Dynamic Recrystallization in α-Zr, Mater. Sci. Eng. A, 2018, 718, p 104–110

    Article  CAS  Google Scholar 

  48. Y. Lin et al., EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24

    Article  CAS  Google Scholar 

  49. Y. Lin et al., New Constitutive Model for Hot Deformation Behaviors of Ni-Based Superalloy Considering the Effects of Initial δ Phase, J. Mater. Eng. Perform., 2015, 24(9), p 3527–3538

    Article  CAS  Google Scholar 

  50. Y. Lin and X.-Y. Wu, A New Method for Controlling Billet Temperature During Isothermal Die Forging of a Complex Superalloy Casing, J. Mater. Eng. Perform., 2015, 24(9), p 3549–3557

    Article  CAS  Google Scholar 

  51. F. Pilehva et al., Hot Deformation and Dynamic Recrystallization of Ti-6Al-7Nb Biomedical Alloy in Single-Phase β Region, J. Mater. Eng. Perform., 2015, 24(5), p 1799–1808

    Article  CAS  Google Scholar 

  52. P.S. Roodposhti et al., Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25(9), p 3697–3709

    Article  Google Scholar 

  53. A. Sarkar et al., High Temperature Deformation Behavior of Zr-1Nb Alloy, J. Alloys Compd., 2017, 703, p 56–66

    Article  CAS  Google Scholar 

  54. B. Wang et al., Dynamic Recrystallization Mechanism of Inconel 690 Superalloy During Hot Deformation at High Strain Rate, J. Mater. Eng. Perform., 2013, 22(8), p 2382–2388

    CAS  Google Scholar 

  55. D. Hull and D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, 2001

    Google Scholar 

  56. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982

    Google Scholar 

  57. B. Verlinden et al., Thermo-Mechanical Processing of Metallic Materials, Vol 11, Elsevier, Amsterdam, 2007

    Google Scholar 

  58. A. Behera et al., Hot Deformation Behaviour of Niobium in Temperature Range 700-1500°, C. Materials Science and Technology, 2014, 30(6), p 637–644

    Article  CAS  Google Scholar 

  59. F. Humphreys, Review Grain and Subgrain Characterisation by Electron Backscatter Diffraction, J. Mater. Sci., 2001, 36(16), p 3833–3854

    Article  CAS  Google Scholar 

  60. S. Mitsche, P. Pölt, and C. Sommitsch, Recrystallization Behaviour of the Nickel-Based Alloy 80 A During Hot Forming, J. Microsc., 2007, 227(3), p 267–274

    Article  CAS  Google Scholar 

  61. S. Mitsche et al., Quantification of the Recrystallized Fraction in a Nickelbase-Alloy from EBSD-Data, Microsc. Microanal., 2003, 9(S03), p 344–345

    Google Scholar 

  62. J. Tarasiuk, P. Gerber, and B. Bacroix, Estimation of Recrystallized Volume Fraction from EBSD Data, Acta Mater., 2002, 50(6), p 1467–1477

    Article  CAS  Google Scholar 

  63. S. Wright, Quantification of Recrystallized Fraction from Orientation Imaging Scans, ICOTOM 12 in Proceedings of the 12th International Conference on Textures of Materials (ICOTOM 12), Montreal, Canada, J.A. Szpunar, Ed., NRC Research Press, Ottawa, 1999,

    Google Scholar 

  64. N.P. Gurao et al., Evolution of Crystallographic Texture and Microstructure During Cold Rolling of Twinning-Induced Plasticity (TWIP) Steel: Experiments and Simulations, Metall. Mater. Trans. A, 2012, 43(13), p 5193–5201

    Article  CAS  Google Scholar 

  65. R. Kapoor et al., Softening of Al During Multi-axial Forging in a Channel Die, Mater. Sci. Eng. A, 2013, 560, p 404–412

    Article  CAS  Google Scholar 

  66. Y. Zhong et al., Dislocation Structure Evolution and Characterization in the Compression Deformed Mn-Cu Alloy, Acta Mater., 2007, 55(8), p 2747–2756

    Article  CAS  Google Scholar 

  67. S. Biswas et al., Evolution of Texture and Microstructure During Hot Torsion of a Magnesium Alloy, Acta Mater., 2013, 61(14), p 5263–5277

    Article  CAS  Google Scholar 

  68. S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261

    Article  CAS  Google Scholar 

  69. S. Biswas and S. Suwas, Evolution of Sub-micron Grain Size and Weak Texture in Magnesium Alloy Mg-3Al-0.4 Mn by a Modified Multi-axial Forging Process, Scr. Mater., 2012, 66(2), p 89–92

    Article  CAS  Google Scholar 

  70. W. Aretz, D. Ponge, and G. Gottstein, Evolution of Necklace Structures During Hot Compression of Ni3Al+ B, Scr. Metall. Mater., 1992, 27(11), p 1593–1598

    Article  CAS  Google Scholar 

  71. M. Drury and F. Humphreys, The Development of Microstructure in Al-5% Mg During High Temperature Deformation, Acta Metall., 1986, 34(11), p 2259–2271

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India (Grant No. RP-ON 2011/36/19), for financial support for the experimental expenses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apu Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, A., Sarkar, A., Kapoor, R. et al. Understanding the Mechanism of Dynamic Recrystallization During High-Temperature Deformation in Nb-1Zr-0.1C Alloy. J. of Materi Eng and Perform 28, 448–462 (2019). https://doi.org/10.1007/s11665-018-3799-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3799-3

Keywords

Navigation