Skip to main content
Log in

Characterization of Corrosion Within Friction Stir Weld Zones of an API X-70 Steel Using a Novel Microcell Setup

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The susceptibility of API-X70 friction stir weld zones to corrosion in a Na2SO4 acid medium is successfully investigated using an innovative microcell setup. Microstructures were characterized by optical and electron microscopy, Vickers microhardness mapping and linear potential scan voltammetry, at micro- and macroscales. Potential galvanic couples between the weld zones were identified. The most anodic zone was base metal, which, with a banded microstructure of ferrite and perlite, developed a potential difference of up to 45 mV in comparison with the adjacent heat-affected zone. Friction stir welding promoted solute redistribution and the formation of martensite/retained austenite constituent, which contributed to reduced galvanic corrosion between ferrite and cementite. The thermo-mechanically affected zone was the most cathodic region, composed of acicular ferrite, coarse bainite and martensite/retained austenite constituent. Polarization resistance progressively increased, and corrosion current density progressively decreased, from base metal toward stir zone. In addition to the reduction in galvanic corrosion, a more uniform distribution of corrosion products in the stir zone also accounted for this behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng., R, 2005, 50(1-2), p 1–78

    Google Scholar 

  2. G.K. Padhy, C.S. Wu, and S. Gao, Friction Stir Based Welding and Processing Technologies: Processes, Parameters, Microstructures and Applications—A Review, J. Mater. Sci. Technol., 2018, 34(1), p 1–38

    Google Scholar 

  3. B.Y.J. Defalco and R. Steel, Friction Stir Process Now Welds Steel Pipe, Weld. J., 2009, 5, p 44–48

    Google Scholar 

  4. T.F.A. Santos, T.F.C. Hermenegildo, C.R.M. Afonso, R.R. Marinho, M.T.P. Paes, and A.J. Ramirez, Fracture Toughness of ISO 3183 X80M (API, 5L X80) Steel Friction Stir Welds, Eng. Fract. Mech., 2010, 77(15), p 937–2945

    Google Scholar 

  5. T.W. Nelson and S.A. Rose, Controlling Hard Zone Formation in Friction Stir Processed HSLA Steel, J. Mater. Process. Technol., 2016, 231, p 66–74

    CAS  Google Scholar 

  6. J.W. Sowards, T. Gnaupel-Herold, J.D. McColskey, V.F. Pereira, and A.J. Ramirez, Characterization of Mechanical Properties, Fatigue-Crack Propagation, and Residual Stress in a Microalloyed Pipeline-Steel Friction Stir Weld, Mater. Des., 2015, 88, p 632–642

    CAS  Google Scholar 

  7. J.A. Avila, J. Rodriguez, P.R. Mei, and A.J. Ramirez, Microstructure and Fracture Toughness of Multipass Friction Stir Welded Joints of API, 5L-X80 Steel Plates, Mater. Sci. Eng. A, 2016, 673, p 257–265

    CAS  Google Scholar 

  8. P.S. Pao, R.W. Fonda, H.N. Jones, C.R. Feng, and D.W. Moon, Friction Stir Welding of HSLA-65 Steel, Friction Stir Welding and Processing IV, R.S. Mishra, M.W. Mahoney, T.J. Lienert, and K.V. Jata (Eds.), February 25–March 1, 2007 (Orlando), The Minerals, Metals & Materials Society, John Wiley & Sons, 2007, p 243–251

  9. R.S. Mishra, P.S. De, and N. Kumar, Friction Stir Welding and Processing: Science and Engineering, Springer, Berlin, 2014

    Google Scholar 

  10. K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63(12), p 1201–1204

    CAS  Google Scholar 

  11. D.K. Jangir, A. Verma, K.M. Sankar, A.S. Khanna, and A. Singla, Influence of Grain Size on Corrosion Resistance and Electrochemical Behavior of Mild Steel, Int. J. Res. Appl. Sci. Eng. Technol., 2018, 6(4), p 2875–2881

    Google Scholar 

  12. S. Gollapudi, Grain Size Distribution Effects on the Corrosion Behaviour of Materials, Corros. Sci., 2012, 62, p 90–94

    CAS  Google Scholar 

  13. H.B. Li, Z.H. Jiang, H. Feng, S.C. Zhang, L. Li, P.D. Han, R.D.K. Misra, and J.Z. Li, Microstructure, Mechanical and Corrosion Properties of Friction Stir Welded High Nitrogen Nickel-Free Austenitic Stainless Steel, Mater. Des., 2015, 84, p 291–299

    CAS  Google Scholar 

  14. M. Jariyaboon, A.J. Davenport, R. Ambat, B.J. Connolly, S.W. Williams, and D.A. Price, The Effect of Welding Parameters on the Corrosion Behaviour of Friction Stir Welded AA2024T351, Corros. Sci., 2007, 49(2), p 877–909

    CAS  Google Scholar 

  15. Z.Y. Liu, C.W. Du, C. Li, F.M. Wang, and X.G. Li, Stress Corrosion Cracking of Welded API, X70 Pipeline Steel in Simulated Underground Water, J. Mater. Eng. Perform., 2013, 22(9), p 2550–2556

    CAS  Google Scholar 

  16. G.A. Zhang and Y.F. Cheng, Micro-Electrochemical Characterization of Corrosion of Welded X70 Pipeline Steel in Near-Neutral pH Solution, Corros. Sci., 2009, 51(8), p 1714–1724

    CAS  Google Scholar 

  17. J.R. Davis, Corrosion of Carbon Steel and Low-Alloy Steel Weldments, Corrosion of Weldments, ASM International, Cleveland, 2006, p 13–41

    Google Scholar 

  18. P.J. Konkol, J.A. Mathers, R. Johnson, and J.R. Pickens, Friction Stir Welding of HSLA-65 Steel for Shipbuilding, J. Ship Prod. Des., 2003, 19(3), p 159–164

    Google Scholar 

  19. D. Trinh, S. Frappart, G. Rückert, F. Cortial, and S. Touzain, Effect of Friction Stir Welding Process on Microstructural Characteristics and Corrosion Properties of Steels for Naval Applications, Corros. Eng. Sci. Technol., 2019, 54(4), p 353–361

    CAS  Google Scholar 

  20. G.J. Abraham, V. Kain, G.K. Dey, and V.S. Raja, Corrosion Characterisation of Laser Beam and Tungsten Inert Gas Weldment of Nickel Base Alloys: Micro-Cell Technique, Corros. Sci., 2015, 93, p 1–8

    CAS  Google Scholar 

  21. H. Böhni, T. Suter, and A. Schreyer, Microtechniques and Nanotechniques to Study Localized Corrosion, Electrochim. Acta, 1995, 40(10), p 1361–1368

    Google Scholar 

  22. T. Suter and H. Böhni, A New Microelectrochemical Method to Study Pit Initiation on Stainless Steels, Electrochim. Acta, 1997, 42(20–22), p 3275–3280

    CAS  Google Scholar 

  23. F. Andreatta and L. Fedrizzi, The Use of the Electrochemical Micro-Cell for the Investigation of Corrosion Phenomena, Electrochim. Acta, 2016, 203, p 337–349

    CAS  Google Scholar 

  24. T. Suter and H. Bohni, Microelectrodes for Corrosion Studies in Microsystems, Electrochim. Acta, 2001, 47, p 191–199

    CAS  Google Scholar 

  25. H. Li, S. Yang, S. Zhang, B. Zhang, Z. Jiang, H. Feng, P. Han, and J. Li, Microstructure Evolution and Mechanical Properties of Friction Stir Welding Super-Austenitic Stainless Steel S32654, Mater. Des., 2017, 118, p 207–217

    CAS  Google Scholar 

  26. I.A. Pasti and T. Lazarevic, Switching Between Voltammetry and Potentiometry in Order to Determine H + or OH Ion Concentration over the Entire pH Scale by Means of Tungsten Disk Electrode, J. Electroanal. Chem., 2012, 665, p 83–89

    CAS  Google Scholar 

  27. S. Kou, Welding Metallurgy, 2nd ed., Wiley, Hoboken, 2003

    Google Scholar 

  28. H. Aydin and T.W. Nelson, Microstructure and Mechanical Properties of Hard Zone in Friction Stir Welded X80 Pipeline Steel Relative to Different Heat Input, Mater. Sci. Eng. A, 2013, 586, p 313–322

    CAS  Google Scholar 

  29. S.H. Mousavi Anijdan, D. Sediako, and S. Yue, Optimization of Flow Stress in Cool Deformed Nb-Microalloyed Steel by Combining Strain Induced Transformation of Retained Austenite, Cooling Rate and Heat Treatment, Acta Mater., 2012, 60(3), p 1221–1229

    CAS  Google Scholar 

  30. A. Tribe and T.W. Nelson, Study on the Fracture Toughness of Friction Stir Welded API, X80, Eng. Fract. Mech., 2015, 150, p 58–69

    Google Scholar 

  31. S.H. Mousavi Anijdan and S. Yue, The Effect of Cooling Rate, and Cool Deformation Through Strain-Induced Transformation, on Microstructural Evolution and Mechanical Properties of Microalloyed Steels, Metall. Mater. Trans. A, 2012, 43(4), p 1140–1162

    CAS  Google Scholar 

  32. M. Ferhat, A. Benchettara, S.E. Amara, and D. Najjar, Corrosion Behaviour of Fe-C Alloys in a Sulfuric Medium, J. Mater. Environ. Sci., 2014, 5(4), p 1059–1068

    CAS  Google Scholar 

  33. R.O. Ritchie, M.H.C. Cedeno, V.F. Zackay, and E.R. Parker, Effects of Silicon Additions and Retained Austenite on Stress Corrosion Cracking in Ultrahigh Strength Steels, Metall. Trans. A, 1978, 9(1), p 35–40

    Google Scholar 

  34. C.W. Du, X.G. Li, P. Liang, Z.Y. Liu, G.F. Jia, and Y.F. Cheng, Effects of Microstructure on Corrosion of X70 Pipe Steel in an Alkaline Soil, J. Mater. Eng. Perform., 2008, 18(2), p 216–220

    Google Scholar 

  35. N. Ochoa, C. Vega, N. Pébère, J. Lacaze, and J.L. Brito, CO2 Corrosion Resistance of Carbon Steel in Relation with Microstructure Changes, Mater. Chem. Phys., 2015, 156, p 198–205

    CAS  Google Scholar 

  36. M. Alizadeh and S. Bordbar, The Influence of Microstructure on the Protective Properties of the Corrosion Product Layer Generated on the Welded API, X70 steel in Chloride Solution, Corros. Sci., 2013, 70, p 170–179

    CAS  Google Scholar 

  37. C.T. Kwok, H.C. Man, and F.T. Cheng, Cavitation Erosion and Pitting Corrosion Behaviour of Laser Surface-Melted Martensitic Stainless Steel UNS S42000, Surf. Coat. Technol., 2000, 126, p 238–255

    CAS  Google Scholar 

  38. X. Hao, J. Dong, I.-I.N. Etim, J. Wei, and W. Ke, Sustained Effect of Remaining Cementite on the Corrosion Behavior of Ferrite-Pearlite Steel Under the Simulated Bottom Plate Environment of Cargo Oil Tank, Corros. Sci., 2016, 110, p 296–304

    CAS  Google Scholar 

  39. K.D. Ralston, D. Fabijanic, and N. Birbilis, Electrochimica Acta Effect of Grain Size on Corrosion of High Purity Aluminium, Electrochim. Acta, 2011, 56(4), p 1729–1736

    CAS  Google Scholar 

  40. F. Arjmand and A. Adriaens, Microcapillary Electrochemical Droplet Cells: Applications in Solid-State Surface Analysis, J. Solid State Electrochem., 2014, 18(7), p 1779–1788

    CAS  Google Scholar 

  41. F. Arjmand and A. Adriaens, Investigation of 304L Stainless Steel in a NaCl Solution Using a Microcapillary Electrochemical Droplet Cell: Comparison with Conventional Electrochemical Techniques, Electrochim. Acta, 2012, 59, p 222–227

    CAS  Google Scholar 

  42. R. Oltra, B. Vuillemin, F. Thebault, and F. Rechou, Effect of the Surrounding Aeration on Microcapillary Electrochemical Cell Experiments, Electrochem. Commun., 2008, 10(6), p 848–850

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Getúlio de Vasconcelos and MSc. Renê Volu, from Dedalo Laboratory at the Institute for Advanced Studies (IEAv), for their support with laser processing; CAPES, for graduation scholarship; and FAPESP, for research funding (Proc. 2016/10637-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane Ribeiro da Cruz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cruz, J.R., Bertazzoli, R. Characterization of Corrosion Within Friction Stir Weld Zones of an API X-70 Steel Using a Novel Microcell Setup. J. of Materi Eng and Perform 29, 98–108 (2020). https://doi.org/10.1007/s11665-019-04531-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04531-z

Keywords

Navigation