Skip to main content

Advertisement

Log in

Mechanical Properties of X70 Welded Joint in High-Pressure Natural Gas/Hydrogen Mixtures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of hydrogen on the mechanical properties of X70 welded joint was investigated in simulated natural gas/hydrogen mixtures at 10 MPa. The hydrogen volume fraction was set as 0, 5.0 and 10.0 vol.%. The slow strain rate tensile test showed that the reduction in the area of the welded zone (WZ) metal was reduced more than that of the base metal. The variation in fatigue crack growth rate (FCGR) from high to low followed the order: heat-affected zone (HAZ) metal, base metal and WZ metal. In addition, the difference became more obvious with increasing hydrogen volume fraction. For the HAZ metal, the FCGR in 10.0 vol.% hydrogen mixtures was approximately 22 times of that in nitrogen. Furthermore, based on FCGR and fracture mechanics, the predicted fatigue life of the X70 pipeline with an initial flaw depth of 0.5 mm dropped sharply from 34,302 cycles to 3457 cycles even though 5.0 vol.% hydrogen was added in the simulated natural gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Liu, C. Liu, An Overall Discussion on the Developmental Situation and Application Practice of Renewable Energy in China. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2013, 31, p 1219–1246

    Google Scholar 

  2. Y. Ding, W. Han, Q. Chai, S. Yang, and W. Shen, Coal-Based Synthetic Natural Gas (SNG): A Solution to China’s Energy Security and CO2 Reduction?, Energy Policy, 2013, 55, p 445–453

    Article  CAS  Google Scholar 

  3. B. Petroleum, BP Statistical Review of World Energy 2018, 2018

  4. D. Kroniger and R. Madlener, Hydrogen Storage for Wind Parks: A Real Options Evaluation for an Optimal Investment in More Flexibility, Appl. Energy, 2014, 5, p 931–946

    Article  Google Scholar 

  5. J.O.M. Bockris and T.N. Veziroglu, Estimates of the Price of Hydrogen as a Medium for Wind and Solar Sources, Int. J. Hydrog. Energy, 2007, 32, p 1605–1610

    Article  CAS  Google Scholar 

  6. DOE, Fuel Cells and Infrastructure Technologies Program, Multi-year Research, Development and Demonstration Plan: Planned Program Activities for 20052015. Washington, DC, USA, 2007

  7. B.P. Somerday and C. Marchi, Technical Reference on Hydrogen Compatibility of Materials: Plain Carbon Ferritic Steels: C-Mn Alloys, SANDIA REPORT SAND2008-1163 No. 1211-1, Sandia National Laboratories, Livermore, USA, 2008

  8. S.K. Sharma and S. Maheshwari, A Review on Welding of High Strength Oil and Gas Pipeline Steels, J. Nat. Gas Sci. Eng., 2017, 38, p 203–217

    Article  CAS  Google Scholar 

  9. S.P. Trasatti, E. Sivieri, and F. Mazza, Susceptibility of a X80 Steel to Hydrogen Embrittlement, Mater. Corros., 2005, 56, p 111–117

    Article  CAS  Google Scholar 

  10. N. Eliaz, A. Shachar, B. Tal, and D. Eliezer, Characteristics of Hydrogen Embrittlement, Stress Corrosion Cracking and Tempered Martensite Embrittlement in High-Strength Steels, Eng. Fail. Anal., 2002, 9, p 167–184

    Article  CAS  Google Scholar 

  11. D. Hardie, E.A. Charles, and A.H. Lopez, Hydrogen Embrittlement of High Strength Pipeline Steels, Corros. Sci., 2006, 48, p 4378–4385

    Article  CAS  Google Scholar 

  12. W.R. Hoover, J.J. Iannucci, S.L. Robinson, J.R. Spingarn and R.E. Stoltz, Hydrogen Compatibility of Structural Materials for Energy Storage and Transmission, NASA STI/Recon Technical Report N No. 81, Sandia National Laboratories, Livermore, 1981

  13. M.D. Stalheim, T. Boggedd and Marchi C.S., Microstructure and Mechanical Property Performance of Commercial Grade API Pipeline Steels in High Pressure Gaseous Hydrogen, 2010 8th International Pipeline Conference, September 27October 1, 2010 (Alberta, Canada), International Petroleum Technology Institute and the Pipeline Division, ASME, 2010, p 529–537

  14. B.U. Bong, L.H. Moo and B.S. Wook, Hydrogen Embrittlement for X-70 Pipeline Steel in High Pressure Hydrogen Gas, ASME 2015 Pressure Vessels and Piping Conference, July 1923, 2015 (Massachusetts, USA), Pressure Vessels and Piping Division, ASME, 2015, p V06BT06A018

  15. E.S. Drexler, A.J. Slifka, R.L. Amaro, N. Barbosa, D.S. Lauria, L.E. Hayden, and D.G. Stalheim, Fatigue Crack Growth Rates of API, X70 Pipeline Steel in a Pressurized Hydrogen Gas Environment, Fatigue Fract. Eng. Mater. Struct., 2014, 37, p 517–525

    Article  CAS  Google Scholar 

  16. L. Briottet, I. Moro, and P. Lemoine, Quantifying the Hydrogen Embrittlement of Pipeline Steels for Safety Considerations, Int. J. Hydrog. Energy, 2012, 37, p 17616–17623

    Article  CAS  Google Scholar 

  17. C.S. Marchi, B.P. Somerday, K.A. Nibur, D.G. Stalheim, T. Boggess and S. Jansto, Fracture and Fatigue of Commercial Grade API Pipeline Steels in Gaseous Hydrogen, ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, July 1822, 2010 (Washington, USA), Pressure Vessels and Piping Division, ASME, 2010, p 939–948

  18. R.A. Carneiro, R.C. Ratnapuli, and V.F.C. de Lins, The Influence of Chemical Composition and Microstructure of API, Linepipe Steels on Hydrogen Induced Cracking and Sulfide Stress Corrosion Cracking, Mater. Sci. Eng. A Struct., 2003, 357, p 104–110

    Article  Google Scholar 

  19. J. Kittel, V. Smanio, M. Fregonese, L. Garnier, and X. Lefebvre, Hydrogen Induced Cracking (HIC) Testing of Low Alloy Steel in Sour Environment: Impact of Time of Exposure on the Extent of Damage, Corros. Sci., 2010, 52, p 1386–1392

    Article  CAS  Google Scholar 

  20. P. Wang, J. Wang, Z. Lv, Y. Zheng, S. Zheng, and Y. Qi, Tensile and Impact Properties of X70 Pipeline Steel Exposed to Wet H2S Environments, Int. J. Hydrog. Energy, 2015, 40, p 11514–11521

    Article  CAS  Google Scholar 

  21. R.K.Z. Davani, R. Miresmaeili, and M. Soltanmohammadi, Effect of Thermomechanical Parameters on Mechanical Properties of Base Metal and Heat Affected Zone of X65 Pipeline Steel Weld in the Presence of Hydrogen, Mater. Sci. Eng. A Struct., 2018, 718, p 135–146

    Article  Google Scholar 

  22. W. Zhao, T. Zhang, Y. Zhao, J. Sun, and Y. Wang, Hydrogen Permeation and Embrittlement Susceptibility of X80 Welded Joint Under High-Pressure Coal Gas Environment, Corros. Sci., 2016, 111, p 84–97

    Article  CAS  Google Scholar 

  23. A. Alvaro, V. Olden, A. Macadre, and O.M. Akselsen, Hydrogen Embrittlement Susceptibility of a Weld Simulated X70 Heat Affected Zone Under H2 Pressure, Mater Sci. Eng. A Struct., 2014, 597, p 29–36

    Article  CAS  Google Scholar 

  24. J. Lee, D. Lee, M. Seok, U.B. Baek, Y. Lee, S.H. Nahm, and J. Jang, Hydrogen-Induced Toughness Drop in Weld Coarse-Grained Heat-Affected Zones of Linepipe Steel, Mater. Charact., 2013, 82, p 17–22

    Article  CAS  Google Scholar 

  25. ASME Boiler and Pressure Vessel Code Section VIII Division 3: Alternative Rules for Construction of High Pressure Vessels, ASME BPVC VIII-3:2017, ASME, 2017

  26. GB/T 9711-2017 Petroleum and Natural Gas Industries-Steel Pipe for Pipeline Transportation Systems, GB/T 9711-2011, SAC, 2011

  27. H. Cialone and J. Holbrook, Sensitivity of Steels to Degradation in Gaseous Hydrogen, Hydrogen Embrittlement: Prevention and Control, R. Louis, Ed., American Society for Testing and Materials, West Conshohocken, 1988, p 134–152

    Chapter  Google Scholar 

  28. H.G. Nelson, Hydrogen-Induced Slow Crack Growth of a Plain Carbon Pipeline Steel under Conditions of Cyclic Loading, September 7–11, 1975 (Moran, WY), NASA Ames Research Center, 1976, p 602–621

  29. C.S. Marchi, B.P. Somerday, and K.A. Nibur, Development of Methods for Evaluating Hydrogen Compatibility and Suitability, Int. J. Hydrog. Energy, 2014, 39, p 20434–20439

    Article  Google Scholar 

  30. D. Haeseldonckx and W.D. Haeseleer, The Use of the Natural-Gas Pipeline Infrastructure for Hydrogen Transport in a Changing Market Structure, Int. J. Hydrog. Energy, 2007, 32, p 1381–1386

    Article  CAS  Google Scholar 

  31. L. Briottet, R. Batisse, G. de Dinechin, P. Langlois, and L. Thiers, Recommendations on X80 Steel for the Design of Hydrogen Gas Transmission Pipelines, Int. J. Hydrog. Energy, 2012, 37, p 9423–9430

    Article  CAS  Google Scholar 

  32. T. An, H. Peng, P. Bai, S. Zheng, X. Wen, and L. Zhang, Influence of Hydrogen Pressure on Fatigue Properties of X80 Pipeline Steel, Int. J. Hydrog. Energy, 2017, 42, p 15669–15678

    Article  CAS  Google Scholar 

  33. R.L. Amaro, E.S. Drexler, and A.J. Slifka, Fatigue Crack Growth Modeling of Pipeline Steels in High Pressure Gaseous Hydrogen, Int. J. Fatigue, 2014, 62, p 249–257

    Article  CAS  Google Scholar 

  34. C.S. Marchi, B.P. Somerday, and S.L. Robinson, Permeability, Solubility and Diffusivity of Hydrogen Isotopes in Stainless Steels at High Gas Pressures, Int. J. Hydrog. Energy, 2007, 32, p 100–116

    Article  Google Scholar 

  35. A.J. Haq, K. Muzaka, D.P. Dunne, A. Calka, and E.V. Pereloma, Effect of Microstructure and Composition on Hydrogen Permeation in X70 Pipeline Steels, Int. J. Hydrog. Energy, 2013, 38, p 2544–2556

    Article  CAS  Google Scholar 

  36. N. Nanninga, A. Slifka, Y. Levy, and C. White, A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen, J. Res. Natl. Inst. Stand. Technol., 2010, 115, p 437

    Article  CAS  Google Scholar 

  37. G.T. Park, S.U. Koh, H.G. Jung, and K.Y. Kim, Effect of Microstructure on the Hydrogen Trapping Efficiency and Hydrogen Induced Cracking of Linepipe Steel, Corros. Sci., 2008, 7, p 1865–1871

    Article  Google Scholar 

  38. T. Depover, E. Wallaert, and K. Verbeken, Fractographic Analysis of the Role of Hydrogen Diffusion on the Hydrogen Embrittlement Susceptibility of DP Steel, Mater. Sci. Eng. A Struct., 2016, 649, p 201–208

    Article  CAS  Google Scholar 

  39. T. An, S. Zheng, H. Peng, X. Wen, L. Chen, and L. Zhang, Synergistic Action of Hydrogen and Stress Concentration on the Fatigue Properties of X80 Pipeline Steel, Mater. Sci. Eng. A Struct., 2017, 700, p 321–330

    Article  CAS  Google Scholar 

  40. N.E. Nanninga, Y.S. Levy, E.S. Drexler, R.T. Condon, A.E. Stevenson, and A.J. Slifka, Comparison of Hydrogen Embrittlement in Three Pipeline Steels in High Pressure Gaseous Hydrogen Environments, Corros. Sci., 2012, 59, p 1–9

    Article  CAS  Google Scholar 

  41. A.R.H. Midawi, E.B.F. Santos, N. Huda, A.K. Sinha, R. Lazor, and A.P. Gerlich, Microstructures and Mechanical Properties in Two X80 Weld Metals Produced Using Similar Heat Input, J. Mater. Process. Technol., 2015, 226, p 272–279

    Article  CAS  Google Scholar 

  42. T. Hayashi, F. Kawabata and K. Amano, Toughness Controlling Factor of the Extremely Low Carbon Bainitic Steel, Accelerated Cooling/Direct Quenching of Steels, September 15–18, 1997 (Indianapolis, USA), Indiana Convention Center, 1997. p 93–99

Download references

Acknowledgments

This research was supported by the National Program on Key Research Project of China (Grant No. 2016YFC0801501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengli Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Zheng, J., Meng, B. et al. Mechanical Properties of X70 Welded Joint in High-Pressure Natural Gas/Hydrogen Mixtures. J. of Materi Eng and Perform 29, 1589–1599 (2020). https://doi.org/10.1007/s11665-020-04680-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04680-6

Keywords

Navigation