Skip to main content
Log in

Friction and Reciprocating Wear Behavior of Borided AISI H13 Steel Under Dry and Lubricated Conditions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the tribological performance of borided and untreated AISI H13 steels under dry and lubricated conditions was studied. The formation of the boride layer on the AISI H13 steel was conducted using the powder-pack boriding process at 950 °C for 6 h of exposure. The tribological performance was studied by reciprocating sliding wear tests, conducted with an alumina ball establishing a sliding distance of 100 m and a speed of 30 mm s−1. The normal loads in dry tests varied from 10 to 25 N, compared with the loads ranged from 75 to 150 N under lubricated conditions (SAE 10W-40). The results showed that under dry conditions, the coefficient of friction (COF) ranged between 0.59 and 0.68 for the borided AISI H13 steel, and from 0.64 to 0.71 for the untreated H13 steel; the wear rates, at 25 N, were estimated around of \(0.8 \times 10^{ - 5}\) and ~ \(6 \times 10^{ - 5}\) mm3 N−1 m−1, respectively. In contrast, using lubricant, the COF decreased to values from 0.10 to 0.11, for both materials, in which the wear rates decreased one order of magnitude. Finally, for the overall set of experimental conditions, failure mechanisms such as smearing, cracking, pitting and plastic deformation were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.M. Novotny, Tool and die steels, in Encyclopedia of Materials: Science and Technology, 1st edn (Elsevier, Amsterdam 2001), p. 9384–9389

  2. J. Marashi, E. Yakushina, P. Xirouchakis, R. Zante, and J. Foster, An Evaluation of H13 Tool Steel Deformation in Hot Forging Conditions, J. Mater. Process. Technol., 2017, 246, p 276–284

    CAS  Google Scholar 

  3. J. Davis, ASM Specialty Handbook Heat-Resistant Material, J.R. Davis, Ed., ASM International, Materials Park, OH, 1997,

    Google Scholar 

  4. B.A. Behrens and F. Schaefer, Prediction of Wear in Hot Forging Tools by Means of Finite-Element-Analysis, J. Mater. Process. Technol., 2005, 167, p 309–315

    CAS  Google Scholar 

  5. R.C. Vega-Morón, G.A. Rodríguez-Castro, L.F. Jiménez-Tinoco, A. Meneses-Amador, J.V. Méndez-Méndez, J. Escobar-Hernández, C.D. Reséndiz-Calderón, and J.L. Nava-Sánchez, Multipass Scratch Behavior of Borided and Nitrided H13 Steel, J. Mater. Eng. Perform., 2018, 27, p 3886–3899

    Google Scholar 

  6. M.V. Leite, C.A. Figueroa, S.C. Gallo, A.C. Rovani, R.L.O. Basso, P.R. Mei, I.J.R. Baumvol, and A. Sinatora, Wear Mechanisms and Microstructure of Pulsed Plasma Nitrided AISI H13 Tool Steel, Wear, 2010, 269, p 466–472

    CAS  Google Scholar 

  7. K. Das, A. Joseph, M. Ghosh, and S. Mukherjee, Microstructure and Wear Behaviour of Pulsed Plasma Nitrided AISI, H13 Tool Steel, Can. Metall. Q., 2016, 55, p 402–408

    CAS  Google Scholar 

  8. G. Castro, A. Fernández-Vicente, and J. Cid, Influence of the Nitriding Time in the Wear Behaviour of an AISI H13 Steel during a Crankshaft Forging Process, Wear, 2007, 263, p 1375–1385

    CAS  Google Scholar 

  9. A.P. Krelling, J.C.G. Milan, and C.E. da Costa, Tribological Behaviour of Borided H13 Steel with Different Boriding Agents, Surf. Eng., 2015, 31, p 581–587

    CAS  Google Scholar 

  10. E.E. Vera Cárdenas, R. Lewis, A.I. Martínez Pérez, J.L. Bernal Ponce, F.J. Pérez Pinal, M.O. Domínguez, and E.D. Rivera Arreola, Characterization and Wear Performance of Boride Phases over Tool Steel Substrates, Adv. Mech. Eng., 2016, 8, p 168781401663025

    Google Scholar 

  11. R. Kara, F. Çolak, and Y. Kayali, Investigation of Wear and Adhesion Behaviors of Borided Steels, Trans. Indian Inst. Metals, 2016, 69, p 1169–1177

    CAS  Google Scholar 

  12. G. Telasang, J. Dutta Majumdar, G. Padmanabham, and I. Manna, Wear and Corrosion Behavior of Laser Surface Engineered AISI H13 Hot Working Tool Steel, Surf. Coat. Technol., 2015, 261, p 69–78

    CAS  Google Scholar 

  13. I.E. Campos-Silva and G.A. Rodríguez-Castro, Boriding to Improve the Mechanical Properties and Corrosion Resistance of Steels, Thermochemical Surface Engineering of Steels, 1st ed., E.J. Mittemeijer and M.A.J. Somers, Ed., Elsevier, Amsterdam, 2015, p 651–702

    Google Scholar 

  14. I. Campos-Silva, M. Flores-Jiménez, D. Bravo-Bárcenas, H. Balmori-Ramírez, J. Andraca-Adame, J. Martínez-Trinidad, and J.A. Meda-Campaña, Evolution of Boride Layers During a Diffusion Annealing Process, Surf. Coat. Technol., 2017, 309, p 155–163

    CAS  Google Scholar 

  15. A.K. Litoria, C.A. Figueroa, L.T. Bim, C.I. Pruncu, A.A. Joshi, and S.S. Hosmani, Pack-Boriding of Low Alloy Steel: Microstructure Evolution and Migration Behaviour of Alloying Elements, Philos. Mag., 2020, 100, p 353–378

    CAS  Google Scholar 

  16. K. Genel, Boriding Kinetics of H13 Steel, Vacuum, 2006, 80, p 451–457

    CAS  Google Scholar 

  17. M. Keddam, M. Ortiz-Domínguez, M. Elias-Espinosa, O. Damián-Mejía, A. Arenas-Flores, O.A. Gómez-Vargas, M. Abreu-Quijano, J.I. Aldana-González, and J. Zuno-Silva, Growth Kinetics of the Fe2B Coating on AISI, H13 Steel, Trans. Indian Inst. Met., 2015, 68, p 433–442

    CAS  Google Scholar 

  18. S. Taktak, Some Mechanical Properties of Borided AISI H13 and 304 Steels, Mater. Des., 2007, 28, p 1836–1843

    CAS  Google Scholar 

  19. A. Günen, İ.H. Karahan, M.S. Karakaş, B. Kurt, Y. Kanca, V.V. Çay, and M. Yıldız, Properties and Corrosion Resistance of AISI H13 Hot-Work Tool Steel with Borided B4C Powders, Metals Mater. Int., 2019. https://doi.org/10.1007/4s12540-019-00421-0

    Article  Google Scholar 

  20. C. Zimmerman, Boriding (Boronizing) of Metals, ASM Handbook. Steel Heat Treating Fundamentals and Processes, Vol 4A, ASM International, Materials Park, 2013, p 709–724

    Google Scholar 

  21. B. Chicco, W.E. Borbidge, and E. Summerville, Engineering The Subsurface of Borided AISI H13 Steel, Surf. Eng., 1998, 14, p 25–30

    CAS  Google Scholar 

  22. W. Fichtl, Boronizing and Its Practical Applications, Mater. Des., 1981, 2, p 276–286

    CAS  Google Scholar 

  23. L.L. Qian and G.A. Stone, A Study of the Behavior of Boron Diffusion in Plain Carbon Steels, J. Mater. Eng. Perform., 1995, 4, p 59–62

    CAS  Google Scholar 

  24. A. Erdoğan, Investigation of High Temperature Dry Sliding Behavior of Borided H13 Hot Work Tool Steel with Nanoboron Powder, Surf. Coat. Technol., 2019, 357, p 886–895

    Google Scholar 

  25. M.S. Gök, Y. Küçük, A. Erdoğan, M. Öge, E. Kanca, and A. Günen, Dry Sliding Wear Behavior of Borided Hot-Work Tool Steel at Elevated Temperatures, Surf. Coat. Technol., 2017, 328, p 54–62

    Google Scholar 

  26. H. Yang, X. Wu, G. Cao, and Z. Yang, Enhanced Boronizing Kinetics and High Temperature Wear Resistance of H13 Steel with Boriding Treatment Assisted by Air Blast Shot Peening, Surf. Coat. Technol., 2016, 307, p 506–516

    CAS  Google Scholar 

  27. R. Carrera-Espinoza, U. Figueroa-López, J. Martínez-Trinidad, I. Campos-Silva, E. Hernández-Sánchez, and A. Motallebzadeh, Tribological Behavior of Borided AISI 1018 Steel Under Linear Reciprocating Sliding Conditions, Wear, 2016, 362–363, p 1–7

    Google Scholar 

  28. E. Garcia-Bustos, M.A. Figueroa-Guadarrama, G.A. Rodríguez-Castro, O.A. Gómez-Vargas, E.A. Gallardo-Hernández, and I. Campos-Silva, The Wear Resistance of Boride Layers Measured by the Four-Ball Test, Surf. Coat. Technol., 2013, 215, p 241–246

    CAS  Google Scholar 

  29. E. Atar, E.S. Kayali, and H. Cimenoglu, Characteristics and Wear Performance of Borided Ti6Al4V Alloy, Surf. Coat. Technol., 2008, 202, p 4583–4590

    CAS  Google Scholar 

  30. H.C. Lee, B.M. Kim, and K.H. Kim, Estimation of Die Service Life in Hot Forging, Considering Lubricants and Surface Treatments, Proc. Inst, Mech. Eng. Part B J. Eng. Manuf., 2003, 217, p 1011–1022

    Google Scholar 

  31. M. Kulka, Current Trends in Boriding, 1st ed., Springer, Cham, 2019

    Google Scholar 

  32. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583

    CAS  Google Scholar 

  33. K.-S. Chen, T.-C. Chen, and K.-S. Ou, Development of Semi-Empirical Formulation for Extracting Materials Properties from Nanoindentation Measurements: Residual Stresses, Substrate Effect, and Creep, Thin Solid Films, 2008, 516, p 1931–1940

    CAS  Google Scholar 

  34. C.A. Cuao-Moreu, E. Hernández-Sanchéz, M. Alvarez-Vera, E.O. Garcia-Sanchez, A. Perez-Unzueta, and M.A.L. Hernandez-Rodriguez, Tribological Behavior of Borided Surface on CoCrMo Cast Alloy, Wear, 2019, 426–427, p 204–211

    Google Scholar 

  35. K. Holmberg and A. Matthews, Coatings Tribology, 2nd ed., Amsterdam, Elsevier, 2009

    Google Scholar 

  36. A. Günen, Properties and Corrosion Resistance of Borided AISI H11 Tool Steel, J. Eng. Mater. Technol., 2019, 142, p 011010

    Google Scholar 

  37. H.C. Fiedler and W.J. Hayes, The Formation of a Soft Layer in Borided Hot Work Die Steels, Metall. Trans., 1970, 1, p 1071–1073

    CAS  Google Scholar 

  38. A. Motallebzadeh, E. Dilektasli, M. Baydogan, E. Atar, and H. Cimenoglu, Evaluation of the Effect of Boride Layer Structure on the High Temperature Wear Behavior of Borided Steels, Wear, 2015, 328–329, p 110–114

    Google Scholar 

  39. B. Basu and M. Kalin, Tribology of Ceramics and Composites, 1st ed., Wiley, Hoboken, 2011

    Google Scholar 

  40. G. Straffelini, Friction and Wear, 1st ed., Springer, Cham, 2015

    Google Scholar 

  41. E. Hernández-Sánchez, J.C. Velázquez, J.L. Castrejón-Flores, A. Chino-Ulloa, I.P. Torres Avila, R. Carrera-Espinoza, J.A. Yescas-Hernández, and C. Orozco-Alvarez, Tribological Behavior of Borided AISI 316L Steel with Reduced Friction Coefficient and Enhanced Wear Resistance, Mater. Trans., 2019, 60, p 156–164

    Google Scholar 

  42. J.K. Sonber, K. Raju, T.S.R.C. Murthy, K. Sairam, A. Nagaraj, S. Majumdar, and V. Kain, Friction and Wear Properties of Zirconium Diboride in Sliding against WC Ball, Int. J. Refract. Metals Hard Mater., 2018, 76, p 41–48

    CAS  Google Scholar 

  43. P.J. Blau, Friction Science and Technology: From Concepts to Applications, 2nd ed., CRC Press, Boca Raton, 2008

    Google Scholar 

  44. B.N.J. Persson, Sliding Friction, 2nd ed., Springer, Berlin, 2000

    Google Scholar 

  45. H.A. Raghs, B. Kondul, and M.H. Cetin, Investigation of Wear Behavior of Boronized H13 Steel under Environment of Nano-Silver-Added Lubricants Coated with Different Ligands, Surf. Topogr. Metrol. Prop., 2020, 8, p 015007

    Google Scholar 

  46. I. Hutchings and P. Shipway, Tribology, Friction and Wear of Engineering Materials, I. Hutchings and P. Shipway, Ed., Butterworth-Heinemann, Oxford, 2017,

    Google Scholar 

  47. B. Bhatt, T.S.R.C. Murthy, A. Nagaraj, K. Singh, J.K. Sonber, K. Sairam, A. Sashanka, G.V.S. Nageswara Rao, T. Srinivasa Rao, and V. Kain, Wear Behaviour of CrB2 + 5 wt.% MoSi2 Composite against Cemented Tungsten Carbide (WC-Co) under Dry Reciprocative Sliding Condition, J. Aust. Ceram. Soc., 2017, 53, p 611–625

    CAS  Google Scholar 

  48. T.S.R.C. Murthy, Microstructure, Thermo-Physical, Mechanical and Wear Properties of In-Situ Formed Boron Carbide—Zirconium Diboride Composite, Ceram. Silikaty, 2017, 62, p 15–30

    Google Scholar 

  49. M. Nosonovsky, S.V. Kailas, and M.R.L. Editors, Tribology for Scientists and Engineers, P.L. Menezes, M. Nosonovsky, S.P. Ingole, S.V. Kailas, and M.R. Lovell, Ed., Springer, New York, 2013,

    Google Scholar 

  50. I. Gunes, Investigation of Tribological Properties and Characterization of Borided AISI 420 and AISI 5120 Steels, Trans. Indian Inst. Metals, 2014, 67, p 359–365

    CAS  Google Scholar 

  51. H. Salhi, A. Chilali, M.E.A. Djeghlal, A. Omar, A. Montagne, A. Mejias, and A. Iost, Indentation Creep and Tribological Characterization of AISI 321, AISI 431 and FDMA Borided and Non-borided Steels, Mater. Res. Express, 2019, 6, p 096409

    CAS  Google Scholar 

  52. A.M. Delgado-Brito, A.D. Contla-Pacheco, V.H. Castrejón-Sánchez, D. López-Suero, J. Oseguera-Peña, and I. Campos-Silva, Effect of the Diffusion Annealing Process on the Sliding Wear Resistance of Cobalt Boride Layer, J. Mater. Eng. Perform., 2020, 29, p 109–125

    CAS  Google Scholar 

  53. R.S. Hsu and S. Gates, Boundary Lubrication and Boundary Lubricating Films, Modern Tribology Handbook, 1st ed., B. Bhushan, Ed., CRC Press, Boca Raton, 2000, p 455–492

    Google Scholar 

Download references

Acknowledgments

This work was supported by the research Grant 20200695 of the Instituto Politecnico Nacional of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Campos-Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morón, R.C., Hernández-Onofre, I., Contla-Pacheco, A.D. et al. Friction and Reciprocating Wear Behavior of Borided AISI H13 Steel Under Dry and Lubricated Conditions. J. of Materi Eng and Perform 29, 4529–4540 (2020). https://doi.org/10.1007/s11665-020-04957-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04957-w

Keywords

Navigation