Skip to main content
Log in

Effect of Warm Laser Shock Peening on the Low-Cycle Fatigue Behavior of DD6 Nickel-Based Single-Crystal Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

By conducting tension–tension low-cycle fatigue tests on three groups of specimens, this paper determined the mechanism and effect of warm laser shock peening (WLSP) on the fatigue performance of DD6 nickel-based single-crystal superalloy. The WLSP treatment induced ripples at the specimen surface, residual stress fields, and dislocation structures in the near-surface layers. The induced ripples increased the surface roughness of the specimens, and the residual stress fields and dislocation structures improved their surface microhardness. Moreover, both the surface roughness and surface microhardness exhibited a tendency to increase with the increase in the WLSP treatment number. During the low-cycle fatigue tests, the specimens underwent plastic deformation, and the \(a/2\left\langle {110} \right\rangle \left\{ {111} \right\}\) slip system was activated. In addition, the WLSP-induced dislocation structures developed during the low-cycle fatigue tests produced dislocation networks and superlattice intrinsic stacking faults, both of which had a positive effect on prolonging the fatigue life of the material. Furthermore, the fatigue life of the material tended to increase with the increasing number of WLSP impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References:

  1. Y. Zhao, H. Gao, Z. Wen, X. Zhang, Y. Yang and Z. Yue, Combined Elastic-Plastic Energy Driving Criteria of Rafting Behavior for Nickel-Based Single Crystal Superalloys, Mater. Sci. Eng. A, 2019, 758, p 154–162.

    Article  CAS  Google Scholar 

  2. H. Yan, S. Tian, G. Zhao, N. Tian, S. Zhang and L. Liu, Deformation Features and Affecting Factors of a Re/Ru-containing Single Crystal Nickel-Based Superalloy During Creep at Elevated Temperature, Mater. Sci. Eng. A, 2019, 768, p 138437.

    Article  CAS  Google Scholar 

  3. J.J. Wang, Z.X. Wen, X.H. Zhang, Y.C. Zhao and Z.F. Yue, Effect Mechanism and Equivalent Model of Surface Roughness on Fatigue Behavior of Nickel-Based Single Crystal Superalloy, Int. J. Fatigue, 2019, 125, p 101–111.

    Article  CAS  Google Scholar 

  4. J. Lan, W. Xuan, Y. Han, Y. Li, H. Wu, W. Shao, C. Li, J. Wang and Z. Ren, Enhanced High Temperature Elongation of Nickel Based Single Crystal Superalloys by Hot Isostatic Pressing, J. Alloy. Compd, 2019, 805, p 78–83.

    Article  CAS  Google Scholar 

  5. Y. Liao, C. Ye and G.J. Cheng, [INVITED] a Review: Warm Laser Shock Peening and Related Laser Processing Technique, Opt. Laser Technol., 2016, 78, p 15–24.

    Article  Google Scholar 

  6. S. Bhamare, G. Ramakrishnan, S.R. Mannava, K. Langer, V.K. Vasudevan and D. Qian, Simulation-Based Optimization of Laser Shock Peening Process for Improved Bending Fatigue Life of Ti-6Al-2Sn-4Zr-2Mo Alloy, Surf. Coat. Technol., 2013, 232, p 464–474.

    Article  CAS  Google Scholar 

  7. P. Peyre and R. Fabbro, Laser Shock Processing: A Review of the Physics and Applications, Opt. Quant. Electron., 1995, 27(12), p 1213–1229.

    CAS  Google Scholar 

  8. J.Z. Lu, H.F. Duan, K.Y. Luo, L.J. Wu, W.W. Deng and J. Cai, Tensile Properties and Surface Nanocrystallization Analyses of H62 Brass Subjected to Room-Temperature and Warm Laser Shock Peening, J. Alloys Compd, 2017, 698, p 633–642.

    Article  CAS  Google Scholar 

  9. J. Lu, H. Lu, X. Xu, J. Yao, J. Cai and K. Luo, High-Performance Integrated Additive Manufacturing with Laser Shock Peening-Induced Microstructural Evolution and Improvement in Mechanical Properties of Ti6Al4V Alloy Components, Int. J. Mach. Tools Manuf., 2020, 148, p 103475.

    Article  Google Scholar 

  10. C. Ye, Y. Liao, S. Suslov, D. Lin and G.J. Cheng, Ultrahigh Dense and Gradient Nano-Precipitates Generated by Warm Laser Shock Peening for Combination of High Strength and Ductility, Mater. Sci. Eng. A, 2014, 609, p 195–203.

    Article  CAS  Google Scholar 

  11. Y. Liao and G.J. Cheng, Controlled Precipitation by Thermal Engineered Laser Shock Peening and its Effect on Dislocation Pinning: Multiscale Dislocation Dynamics Simulation and Experiments, Acta Mater., 2013, 61(6), p 1957–1967.

    Article  CAS  Google Scholar 

  12. Y. Liao, C. Ye, H. Gao, B. Kim, S. Suslov, E.A. Stach and G.J. Cheng, Dislocation Pinning Effects Induced by Nano-Precipitates During Warm Laser Shock Peening: Dislocation Dynamic Simulation and Experiments, J. Appl. Phys., 2011, 110, p 0235182.

    Google Scholar 

  13. J.Z. Zhou, X.K. Meng, S. Huang, J. Sheng, J.Z. Lu, Z.R. Yang, C. Su (2015) Effects of Warm Laser Peening at Elevated Temperature On the Low-Cycle Fatigue Behavior of Ti6Al4V Alloy. Mater. Sci. Eng. A 643, p 86-95

  14. C. Ye, S. Suslov, B.J. Kim, E.A. Stach and G.J. Cheng, Fatigue Performance Improvement in AISI 4140 Steel by Dynamic Strain Aging and Dynamic Precipitation During Warm Laser Shock Peening, Acta Mater., 2011, 59(3), p 1014–1025.

    Article  CAS  Google Scholar 

  15. Y. Liao, S. Suslov, C. Ye and G.J. Cheng, The Mechanisms of Thermal Engineered Laser Shock Peening for Enhanced Fatigue Performance, Acta Mater., 2012, 60(13), p 4997–5009.

    Article  CAS  Google Scholar 

  16. C. Ye, Y. Liao and G.J. Cheng, Warm Laser Shock Peening Driven Nanostructures and their Effects On Fatigue Performance in Aluminum Alloy 6160, Adv. Eng. Mater., 2010, 12(4), p 291–297.

    CAS  Google Scholar 

  17. Y. Liao, C. Ye, B. Kim, S. Suslov, E.A. Stach and G.J. Cheng, Nucleation of Highly Dense Nanoscale Precipitates Based On Warm Laser Shock Peening, J. Appl. Phys., 2010, 108, p 0635186.

    Google Scholar 

  18. D. Hull, Fractography: Observing, Measuring and Interpreting Fracture Surface Topography, 1st ed. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  19. J.P. Lucas and W.W. Gerberich, A Proposed Criterion for Fatigue Threshold- Dislocation Substructure Approach, Fatigue Fract. Eng. Mater. Struct., 1983, 6(3), p 271–280.

    Article  Google Scholar 

  20. A.I. Dekhtyar, B.N. Mordyuk, D.G. Savvakin, V.I. Bondarchuk, I.V. Moiseeva and N.I. Khripta, Enhanced Fatigue Behavior of Powder Metallurgy Ti-6A1-4V Alloy by Applying Ultrasonic Impact Treatment, Mater. Sci. Eng. A, 2015, 641, p 348–359.

    Article  CAS  Google Scholar 

  21. B.N. Mordyuk, G.I. Prokopenko, P.Y. Volosevich, L.E. Matokhnyuk, A.V. Byalonovich and T.V. Popova, Improved Fatigue Behavior of Low-Carbon Steel 20GL by Applying Ultrasonic Impact Treatment Combined with the Electric Discharge Surface Alloying, Mater. Sci. Eng. A, 2016, 659, p 119–129.

    Article  CAS  Google Scholar 

  22. Y.K. Gao, Improvement of Fatigue Property in 7050-T7451 Aluminum Alloy by Laser Peening and Shot Peening, Mater. Sci. Eng. A, 2011, 528(10), p 3823–3828.

    Article  Google Scholar 

  23. Y. Gao, X. Li, Q. Yang and M. Yao, Influence of Surface Integrity On Fatigue Strength of 40CrNi2Si2MoVA Steel, Mater. Lett., 2007, 61(2), p 466–469.

    Article  CAS  Google Scholar 

  24. S.D. Antolovich, S. Liu and R. Baur, Low-Cycle Fatigue Behavior of Rene 80 at Elevated-Temperature, Metall. Mater. Trans. A., 1981, 12(3), p 473–481.

    Article  CAS  Google Scholar 

  25. R.K. Rai, J.K. Sahu, S.K. Das, N. Paulose, D.C. Fernando and C. Srivastava, Cyclic Plastic Deformation Behaviour of a Directionally Solidified Nickel Base Superalloy at 850 °C: Damage Micromechanisms, Mater. Charact., 2018, 141, p 120–128.

    Article  CAS  Google Scholar 

  26. Z. Chu, J. Yu, X. Sun, H. Guan and Z. Hu, High Temperature Low Cycle Fatigue Behavior of a Directionally Solidified Ni-base Superalloy DZ951, Mater. Sci. Eng. A. Struct., 2008, 488(1–2), p 389–397.

    Article  Google Scholar 

  27. S.K. Hwang, H.N. Lee and B.H. Yoon, Mechanism of Cyclic Softening and Fracture of an Ni-Base γ′-Strengthened Alloy Under low-Cycle Fatigue, Metall. Mater. Trans. A, 1989, 20(12), p 2793–2801.

    Article  Google Scholar 

  28. F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong and M. Yuyama, Dislocation Motion in a NI-Fe-based Superalloy During Creep-Rupture Beyond 700 °C, Mater. Lett., 2015, 159, p 241–244.

    Article  CAS  Google Scholar 

  29. J.E. King, Fatigue Crack-propagation in Nickel-base Superalloys-Effects of Microstructure, Load Ratio, and Temperature, Mater. Sci. Technol., 1987, 3(9), p 750–764.

    Article  CAS  Google Scholar 

  30. X.Z. Lv, 镍基单晶高温合金蠕变过程中位错组态及芯部结构研究, (Study of Dislocation Configuration and Core Structure during Creep of High-Temperature Nickel-Based Single-Crystal Alloy), Shandong University, Shandong, 2017, p 157

    Google Scholar 

  31. J.X. Zhang, T. Murakumo, Y. Koizumi and H. Harada, The Influence of Interfacial Dislocation Arrangements in a Fourth Generation Single Crystal TMS-138 Superalloy On Creep Properties, J. Mater. Sci., 2003, 38(24), p 4883–4888.

    Article  CAS  Google Scholar 

  32. A. Suzuki, M.F.X. Gigliotti, B.T. Hazel, D.G. Konitzer and T.M. Pollock, Crack Progression during Sustained-Peak Low-Cycle Fatigue in Single-Crystal Ni-Base Superalloy René N5, Metall. Mater. Trans. A., 2010, 41(4), p 947–956.

    Article  Google Scholar 

  33. L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang and M.J. Mills, Microtwinning and Other Shearing Mechanisms at Intermediate Temperatures in Ni-based Superalloys, Prog. Mater. Sci., 2009, 54(6SI), p 839–873.

    Article  CAS  Google Scholar 

  34. H. Zhou, Y. Ro, H. Harada, Y. Aoki and M. Arai, Deformation Microstructures After Low-Cycle Fatigue in a Fourth-Generation Ni-base SC Superalloy TMS-138, Mater. Sci. Eng. A, 2004, 381(1), p 20–27.

    Article  Google Scholar 

  35. J.H.H.K. Zhang, New Configuration of a [001] Superdislocation Formed During High-Temperature Creep in the γ′ Phase of a Single-Crystal Superalloy TMS-138, J. Mater. Res., 2006, 21(3), p 647–654.

    Article  Google Scholar 

  36. L. Shi, J.J. Yu, C.Y. Cui and X.F. Sun, Microstructural Stability and Tensile Properties of a Ti-containing Single-Crystal Co-Ni-Al-W-base Alloy, Mater. Sci. Eng. A, 2015, 646, p 45–51.

    Article  CAS  Google Scholar 

  37. W.W. Milligan and S.D. Antolovich, The Mechanisms and Temperature-Dependence of Superlattice Stacking-Fault Formation in the Single-Crystal Superalloy Pwa-1480, Metall. Mater. Trans. A, 1991, 22(10), p 2309–2318.

    Article  Google Scholar 

  38. Z. Chu, J. Yu, X. Sun, H. Guan and Z. Hu, Tensile Property and Deformation Behavior of a Directionally Solidified Ni-base Superalloy, Mater. Sci. Eng. A, 2010, 527(12), p 3010–3014.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the supports provided by National Natural Science Foundation of China (No. 51775419) and the National Key R&D Program of China (No. 2016YFB1102602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedian Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Wang, K., Dong, X. et al. Effect of Warm Laser Shock Peening on the Low-Cycle Fatigue Behavior of DD6 Nickel-Based Single-Crystal Superalloy. J. of Materi Eng and Perform 30, 2930–2939 (2021). https://doi.org/10.1007/s11665-021-05508-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05508-7

Keywords

Navigation