Skip to main content
Log in

Mechanical Reliability and In Vitro Bioactivity of 3D-Printed Porous Polylactic Acid-Hydroxyapatite Scaffold

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 13 April 2021

This article has been updated

Abstract

The study aimed to investigate the mechanical reliability and in vitro bioactivity of the three-dimensional (3D) printed hydroxyapatite (HA) reinforced polylactic acid (PLA) porous scaffolds. The experiments have been performed to study the effect of HA wt.% in PLA matrix, infill density, and post-printing thermal-stimulus on the flexural and compressive strength. Next to this, the best combination of input parameters, in-response of the observed mechanical properties, was determined to print the test specimens for the analysis of reliability, through Weibull distribution. Further, the fracture morphology of the developed PLA/HA porous scaffolds has been investigated, using scanning electron microscopy, to observe the involved fracture mechanism. Moreover, the in vitro cell-culture with osteoblastic bone marrow mesenchymal stem cells-lines has been studied after 1, 3, and 7 days of seeding. The results of the study highlighted that the processing parameters have a strong impact on the mechanical properties of the 3D printed porous scaffolds. Further, the in vitro analysis showed excellent growth, proliferation, and differentiation of osteoplastic cells. Along with these, the result of the Weibull distribution advocated that the printed porous scaffolds are mechanically reliable. Overall, the present study unequivocally advocates that the 3D printed PLA/HA scaffold can be used for potential tissue engineering and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Y. Guo, Z. Lv, Y. Huo, L. Sun, S. Chen, Z. Liu, C. He, X. Bi, X. Fan, and Z. You, A Biodegradable Functional Water-Responsive Shape Memory Polymer for Biomedical Applications, J. Mater. Chem. B, 2019, 7(1), p 123–132

    Article  CAS  Google Scholar 

  2. S. Singh, G. Singh, C. Prakash, S. Ramakrishna, L. Lamberti, and C. Pruncu, 3D Printed Biodegradable Composites: An Insight into Mechanical Properties of PLA/Chitosan Scaffold, Polym. Test., 2020, 89, p 106722

    Article  CAS  Google Scholar 

  3. X. Xiao, X. Huang, F. Ye, B. Chen, C. Song, J. Wen, Z. Zhang, G. Zheng, H. Tang, and X. Xie, The miR-34a-LDHA Axis Regulates Glucose Metabolism and Tumor Growth in Breast Cancer, Sci. Rep. 2016, 6.

  4. Z.Q. Liu, D. Jiao, and Z.F. Zhang, Remarkable shape memory effect of a natural biopolymer in aqueous environment, Biomaterials, 2015, 65, p 13–21

    Article  CAS  Google Scholar 

  5. F. Ji, J. Li, Y. Weng, and J. Ren, Synthesis of PLA-Based Thermoplastic Elastomer and Study on Preparation and Properties of PLA-Based Shape Memory Polymers, Mater. Res. Express, 2019, 7(1), p 015315

    Article  Google Scholar 

  6. R. Tejero, E. Anitua, and G. Orive, Toward the Biomimetic Implant Surface, Biopolymers on Titanium-Based Implants for Bone Regeneration, Prog. Polym. Sci., 2014, 39, p 1406–1447

    Article  CAS  Google Scholar 

  7. S. Wu, X. Liu, K.W. Yeung, C. Liu, and X. Yang, Biomimetic Porous Scaffolds for Bone Tissue Engineering, Mater. Sci. Eng. R Rep., 2014, 80, p 1–36

    Article  Google Scholar 

  8. G.J.M. Antony, S.T. Aruna, and S. Raja, Enhanced Mechanical Properties of Acrylate Based Shape Memory Polymer Using Grafted Hydroxyapatite, J. Polym. Res., 2018, 25(5), p 120

    Article  Google Scholar 

  9. H. Kalita, Shape Memory Polymers, Theory and Application, Walter de Gruyter GmbH & Co KG, Berlin, 2018

    Book  Google Scholar 

  10. J. Wang, Q. Zhao, H. Cui, Y. Wang, H. Chen, and X. Du, Tunable Shape Memory Polymer Mold for Multiple Microarray Replications, J. Mater. Chem. A, 2018, 6(48), p 24748–24755

    Article  CAS  Google Scholar 

  11. R.U. Hassan, S. Jo, and J. Seok, Thermorheological Characteristics and Comparison of Shape Memory Polymers Fabricated by Novel 3D Printing Technique, Funct. Mater. Lett., 2018, 11(02), p 365

    Article  Google Scholar 

  12. S. Jose, J. J. George, S., Siengchin, and J. Parameswaranpillai, Introduction to Shape Memory Polymers, Polymer Blends and Composites, State of the Art, Opportunities, New Challenges and Future Outlook. In Shape Memory Polymers, Blends and Composites 2020 (pp. 1–19). Springer, Singapore.

  13. C. Rosales, H. Kim, M. Duarte, L. Chavez, T. Tseng, and Y. Lin, Toughness-Based Recovery Efficiency of Shape Memory Parts Fabricated Using Material Extrusion 3D Printing Technique, Rapid Prototyp. J., 2019, 25, p 30–37

    Article  Google Scholar 

  14. G. Kim, S. Lee, H. Kim, D. Yang, Y. Kim, Y. Kyung, Y. Kim, C. Choi, S. Kim, and S. Kwon, Three-Dimensional Printing, Basic Principles and Applications in Medicine and Radiology, Kor. J. Radiol., 2016, 17(2), p 182–197

    Article  Google Scholar 

  15. A. Bandyopadhyay, S. Bose, and S. Das, 3D Printing of Biomaterials, MRS Bull., 2015, 40(2), p 108–115

    Article  CAS  Google Scholar 

  16. C. O’Brien, B. Holmes, S. Faucett, and L. Zhang, Three-Dimensional Printing of Nanomaterial Scaffolds for Complex Tissue Regeneration, Tissue Eng. Part B Rev., 2014, 21(1), p 103–114

    Article  Google Scholar 

  17. F. Senatov, K. Niaza, M. Zadorozhnyy, A. Maksimkin, S. Kaloshkin, and Y. Estrin, Mechanical Properties and Shape Memory Effect of 3D-Printed PLA-Based Porous Scaffolds, J. Mech. Behav. Biomed. Mater., 2016, 57, p 139–148

    Article  CAS  Google Scholar 

  18. F. Senatov, M. Zadorozhnyy, K. Niaza, V. Medvedev, S. Kaloshkin, N. Anisimova, M. Kiselevskiy, and K. Yang, Shape Memory Effect in 3D-Printed Scaffolds for Self-Fitting Implants, Eur. Polym. J., 2017, 93, p 22–31

    Article  Google Scholar 

  19. Y. Choong, S. Maleksaeedi, H. Eng, J. Wei, and P. Su, 4D Printing of High Performance Shape Memory Polymer Using Stereolithography, Mater. Des., 2017, 15, p 219–225

    Article  Google Scholar 

  20. J. Wu, C. Yuan, Z. Ding, M. Isakov, Y. Mao, T. Wang, M. Dunn, and H. Qi, Multi-shape Active Composites by 3D Printing of Digital Shape Memory Polymers, Sci. Rep. 2016, 13

  21. Y. Yang, Y. Chen, Y. Wei, and Y. Li, 3D Printing of Shape Memory Polymer for Functional Part Fabrication, Int. J. Adv. Manuf. Technol., 2016, 84(9), p 2079–2095

    Article  Google Scholar 

  22. Q. Zhang, K. Zhang, and G. Hu, Smart Three-Dimensional Lightweight Structure Triggered from a Thin Composite Sheet via 3D Printing Technique, Sci. Rep., 2016, 29(6), p 22431

    Article  Google Scholar 

  23. R. Matsuzaki, M. Ueda, M. Namiki, T. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, and Y. Hirano, Three-Dimensional Printing of Continuous-Fiber Composites by In-Nozzle Impregnation, Sci. Rep., 2016, 6, p 1–7

    Article  Google Scholar 

  24. S. Chen, Q. Zhang, and J. Feng, 3D Printing of Tunable Shape Memory Polymer Blends, J. Mater. Chem. C, 2017, 5(33), p 8361–8365

    Article  CAS  Google Scholar 

  25. C. Garcia Rosales, H. Kim, M. Garcia, L. Chavez, M. Castañeda, T. Tseng, and Y. Lin, Characterization of Shape Memory Polymer Parts Fabricated Using Material Extrusion 3D Printing Technique, Rapid Prototyp. J., 2019, 25(2), p 322–331

    Article  Google Scholar 

  26. I. Garces, S. Aslanzadeh, Y. Boluk, and C. Ayranci, Effect of Moisture on Shape Memory Polyurethane Polymers for Extrusion-Based Additive Manufacturing, Materials, 2019, 12(2), p 244

    Article  CAS  Google Scholar 

  27. H. Wu, P. Chen, C. Yan, C. Cai, and Y. Shi, Four-Dimensional Printing of a Novel Acrylate-Based Shape Memory Polymer Using Digital Light Processing, Mater. Des., 2019, 171, p 107704

    Article  Google Scholar 

  28. T. Zhao, R. Yu, X. Li, B. Cheng, Y. Zhang, X. Yang, X. Zhao, Y. Zhao, and W. Huang, 4D Printing of Shape Memory Polyurethane via Stereolithography, Eur. Polym. J., 2018, 101, p 120–126

    Article  CAS  Google Scholar 

  29. R. Yu, X. Yang, Y. Zhang, X. Zhao, X. Wu, T. Zhao, Y. Zhao, and W. Huang, Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer, ACS Appl. Mater. Interfaces, 2017, 9(2), p 1820–1829

    Article  CAS  Google Scholar 

  30. Y. Choong, S. Maleksaeedi, H. Eng, P. Su, and J. Wei, Curing Characteristics of Shape Memory Polymers in 3D Projection and Laser Stereolithography, Virt. Phys. Prototyp., 2017, 12(1), p 77–84

    Article  Google Scholar 

  31. C. Yuan, D. Roach, C. Dunn, Q. Mu, X. Kuang, C. Yakacki, T. Wang, K. Yu, and H. Qi, 3D Printed Reversible Shape Changing Soft Actuators Assisted by Liquid Crystal Elastomers, Soft Matter, 2017, 13(33), p 5558–5568

    Article  CAS  Google Scholar 

  32. M. Bodaghi, A. Damanpack, and W. Liao, Triple Shape Memory Polymers by 4D Printing, Smart Mater. Struct., 2018, 27(6), p 065010

    Article  Google Scholar 

  33. S. Singh, G. Singh, C. Prakash, and S. Ramakrishna, Current Status and Future Directions of Fused Filament Fabrication, J. Manuf. Process., 2020, 55, p 288–306

    Article  Google Scholar 

  34. Z. Zhao, F. Peng, K. Cavicchi, M. Cakmak, R. Weiss, and B. Vogt, Three-Dimensional Printed Shape Memory Objects Based on an Olefin Ionomer of Zinc-Neutralized Poly (Ethylene-co-methacrylic Acid), ACS Appl. Mater. Interfaces, 2017, 9(32), p 27239–27249

    Article  CAS  Google Scholar 

  35. M. Kang, Y. Pyo, J. Jang, Y. Park, Y. Son, M. Choi, J. Ha, Y. Chang, and C. Lee, Design of a Shape Memory Composite (SMC) Using 4D Printing Technology, Sens. Actuators A, 2018, 283, p 187–195

    Article  Google Scholar 

  36. W. Wu, W. Ye, Z. Wu, P. Geng, Y. Wang, and J. Zhao, Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples, Materials, 2017, 10(8), p 970

    Article  Google Scholar 

  37. G. Hu, A. Damanpack, M. Bodaghi, and W. Liao, Increasing Dimension of Structures by 4D Printing Shape Memory Polymers via Fused Deposition Modeling, Smart Mater. Struct., 2017, 26(12), p 125023

    Article  Google Scholar 

  38. X. Peng, H. He, Y. Jia, H. Liu, Y. Geng, B. Huang, and L. Luo, Shape Memory Effect of Three-Dimensional Printed Products Based on Polypropylene/Nylon 6 Alloy, J. Mater. Sci., 2019, 54(12), p 9235–9246

    Article  CAS  Google Scholar 

  39. A. Farzadi, V. Waran, M. Solati-Hashjin, Z. Rahman, M. Asadi, and N. Osman, Effect of Layer Printing Delay on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Prototypes in Bone Tissue Engineering, Ceram. Int., 2015, 41(7), p 8320–8330

    Article  CAS  Google Scholar 

  40. M. Castilho, M. Dias, U. Gbureck, J. Groll, P. Fernandes, I. Pires, B. Gouveia, J. Rodrigues, and E. Vorndran, Fabrication of Computationally Designed Scaffolds by Low Temperature 3D Printing, Biofabrication, 2013, 5(3), p 035012

    Article  CAS  Google Scholar 

  41. M. Castilho, J. Rodrigues, I. Pires, B. Gouveia, M. Pereira, C. Moseke, J. Groll, A. Ewald, and E. Vorndran, Fabrication of Individual Alginate-TCP Scaffolds for Bone Tissue Engineering by Means of Powder Printing, Biofabrication, 2015, 7(1), p 015004

    Article  Google Scholar 

  42. S. Meininger, S. Mandal, A. Kumar, J. Groll, B. Basu, and U. Gbureck, Strength Reliability and In Vitro Degradation of Three-Dimensional Powder Printed Strontium-Substituted Magnesium Phosphate Scaffolds, Acta Biomater., 2016, 31, p 401–411

    Article  CAS  Google Scholar 

  43. M. Castilho, M. Dias, E. Vorndran, U. Gbureck, P. Fernandes, I. Pires, B. Gouveia, H. Armés, E. Pires, and J. Rodrigues, Application of a 3D Printed Customized Implant for Canine Cruciate Ligament Treatment by Tibial Tuberosity Advancement, Biofabrication, 2014, 6(2), p 025005

    Article  Google Scholar 

  44. Y. Lu, Z. Mei, J. Zhang, S. Gao, X. Yang, B. Dong, L. Yue, and H. Yu, Flexural Strength and Weibull Analysis of Y-TZP Fabricated by Stereolithographic Additive Manufacturing and Subtractive Manufacturing, J. Eur. Ceram. Soc., 2020, 40(3), p 826–834

    Article  CAS  Google Scholar 

  45. M. Castilho, B. Gouveia, I. Pires, J. Rodrigues, and M. Pereira, The Role of Shell/Core Saturation Level on the Accuracy and Mechanical Characteristics of Porous Calcium Phosphate Models Produced by 3D Printing, Rapid Prototyp. J., 2018, 21, p 43–55

    Article  Google Scholar 

  46. K. Naresh, K. Shankar, and R. Velmurugan, Reliability Analysis of Tensile Strengths Using Weibull Distribution in Glass/Epoxy and Carbon/Epoxy Composites, Compos. B Eng., 2018, 133, p 129–144

    Article  CAS  Google Scholar 

  47. Ö. Keleş, C. Blevins, and K. Bowman, Effect of Build Orientation on the Mechanical Reliability of 3D Printed ABS, Rapid Prototyp. J., 2017, 23, p 320–328

    Article  Google Scholar 

  48. Z. An, T. Chen, D. Cheng, T. Chen, and Z. Wang, Statistical Analysis and Prediction on Tensile Strength of 316L-SS Joints at High Temperature Based on Weibull Distribution, IOP Conf. Ser. Mater. Sci. Eng., 2017, 281, p 012062

    Article  Google Scholar 

  49. C. Prakash, S. Singh, S. Ramakrishna, G. Królczyk, and C. Le, Microwave Sintering of Porous Ti–Nb–HA Composite with High Strength and Enhanced Bioactivity for Implant Applications, J. Alloys Compd., 2020, 824, p 153774

    Article  CAS  Google Scholar 

  50. C. Prakash, and S. Singh, On the Characterization of Functionally Graded Biomaterial Primed Through a Novel Plaster Mold Casting Process, Mater. Sci. Eng. C (2020), p 110654

  51. G. Singh, S. Singh, C. Prakash, R. Kumar, R. Kumar, and S. Ramakrishna, Characterization of Three-Dimensional Printed Thermal-Stimulus Polylactic Acid-Hydroxyapatite-Based Shape Memory Scaffolds, Polym. Compos., 2020, 41(9), p 3871–3891

    Article  CAS  Google Scholar 

  52. A. Pandey, G. Singh, S. Singh, K. Jha, and C. Prakash, 3D Printed Biodegradable Functional Temperature-Stimuli Shape Memory Polymer for Customized Scaffoldings, J. Mech. Behav. Biomed. Mater., 2020, 108, p 103781

    Article  CAS  Google Scholar 

  53. C. Prakash, S. Singh, M. Singh, K. Verma, B. Chaudhary, and S. Singh, Multi-Objective Particle Swarm Optimization of EDM Parameters to Deposit HA-Coating on Biodegradable Mg-Alloy, Vacuum, 2018, 158, p 180–190

    Article  CAS  Google Scholar 

  54. C. Griffiths, J. Howarth, G. De Almeida-Rowbotham, A. Rees, and R. Kerton, A Design of Experiments Approach for the Optimisation of Energy and Waste During the Production of Parts Manufactured by 3D Printing, J. Clean. Prod., 2016, 139, p 74–85

    Article  Google Scholar 

  55. B. Basu, D. Tiwari, D. Kundu, and R. Prasad, Is Weibull Distribution the Most Appropriate Statistical Strength Distribution for Brittle Materials?, Ceram. Int., 2009, 35, p 237–246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunpreet Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

The original version of this article was revised: The first name of coauthor Gurminder Singh was misspelled (as “Gurmider”) in this article as originally published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, C., Singh, G., Singh, S. et al. Mechanical Reliability and In Vitro Bioactivity of 3D-Printed Porous Polylactic Acid-Hydroxyapatite Scaffold. J. of Materi Eng and Perform 30, 4946–4956 (2021). https://doi.org/10.1007/s11665-021-05566-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05566-x

Keywords

Navigation