Skip to main content
Log in

On Microstructure and Mechanical Properties of a Low-Carbon Low-Alloy Steel Block Fabricated by Wire Arc Additive Manufacturing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, wire arc additive manufacturing process is employed to fabricate a low-carbon low-alloy steel block, using an ER70S-6 solid wire. Three sets of samples with different orientations, including perpendicular (Vertical), parallel (Horizontal), and 45° (45-degree) relative to the deposition plane, were prepared in order to investigate the anisotropy in mechanical properties and microstructure of the fabricated part. Both Horizontal and 45-degree samples showed a uniform microstructure containing mostly ferritic grains with a small volume fraction of pearlite at their grain boundaries. Differently, a periodic microstructure was detected in the Vertical sample, consisting of a combination of acicular ferrite, bainite, and allotriomorphic ferrite formed in the interlayer regions in addition to polygonal ferrite within the melt pools’ center. Moreover, the uniaxial tensile and Charpy impact results exhibited isotropic tensile, yield, elongation, and impact properties for both Horizontal and 45-degree samples; however, the Vertical sample showed a lower mechanical performance. The improved mechanical properties of the Horizontal and 45-degree samples were correlated to their uniform ferritic microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928.

    Article  CAS  Google Scholar 

  2. A. Taşdemir and S. Nohut, An Overview of Wire Arc Additive Manufacturing (WAAM) in Shipbuilding Industry, Ships Offshore Struct., 2020 https://doi.org/10.1080/17445302.2020.1786232

    Article  Google Scholar 

  3. A.V. Filippov, E.S. Khoroshko, N.N. Shamarin, N.L. Savchenko, E.N. Moskvichev, V.R. Utyaganova, E.A. Kolubaev, A.Y. Smolin and S.Y. Tarasov, Characterization of Gradient CuAl-B4C Composites Additively Manufactured Using a Combination of Wire-Feed and Powder-Bed Electron Beam Deposition Methods, J. Alloys Compd., 2021, 859, p 157824. https://doi.org/10.1016/j.jallcom.2020.157824

    Article  CAS  Google Scholar 

  4. M. Ghaffari, A.V. Nemani, M. Rafieazad and A. Nasiri, Effect of Solidification Defects and HAZ Softening on the Anisotropic Mechanical Properties of a Wire Arc Additive-Manufactured Low-Carbon Low-Alloy Steel Part, JOM, 2019, 71(11), p 4215–4224. https://doi.org/10.1007/s11837-019-03773-5

    Article  CAS  Google Scholar 

  5. J.P. Oliveira, B. Crispim, Z. Zeng, T. Omori, F.M.B. Fernandes and R.M. Miranda, Microstructure and Mechanical Properties of Gas Tungsten Arc Welded Cu-Al-Mn Shape Memory Alloy Rods, J. Mater. Process. Technol., 2019, 271, p 93–100. https://doi.org/10.1016/j.jmatprotec.2019.03.020

    Article  CAS  Google Scholar 

  6. F. Martina, J. Mehnen, S.W. Williams, P. Colegrove and F. Wang, Investigation of the Benefits of Plasma Deposition for the Additive Layer Manufacture of Ti-6Al-4V, J. Mater. Process. Technol., 2012, 212(6), p 1377–1386. https://doi.org/10.1016/j.jmatprotec.2012.02.002

    Article  CAS  Google Scholar 

  7. Y. Wang, X. Chen, S. Konovalov, C. Su, A.N. Siddiquee and N. Gangil, In-Situ Wire-Feed Additive Manufacturing of Cu-Al Alloy by Addition of Silicon, Appl. Surf. Sci., 2019, 487, p 1366–1375. https://doi.org/10.1016/j.apsusc.2019.05.068

    Article  CAS  Google Scholar 

  8. P.P. Nikam, D. Arun, K.D. Ramkumar and N. Sivashanmugam, Microstructure Characterization and Tensile Properties of CMT-Based Wire plus Arc Additive Manufactured ER2594, Mater. Charact., 2020, 169, p 110671. https://doi.org/10.1016/j.matchar.2020.110671

    Article  CAS  Google Scholar 

  9. M. Rafieazad, M. Ghaffari, A.V. Nemani and A. Nasiri, Microstructural Evolution and Mechanical Properties of a Low-Carbon Low-Alloy Steel Produced by Wire Arc Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2019 https://doi.org/10.1007/s00170-019-04393-8

    Article  Google Scholar 

  10. S. Li, J. Ning, G.-F. Zhang, L.-J. Zhang, J. Wu and L.-X. Zhang, Microstructural and Mechanical Properties of Wire-Arc Additively Manufactured Al-Zn-Mg Aluminum Alloy: The Comparison of as-Deposited and Heat-Treated Samples, Vacuum, 2021, 184, p 109860. https://doi.org/10.1016/j.vacuum.2020.109860

    Article  CAS  Google Scholar 

  11. W. Wu, J. Xue, L. Wang, Z. Zhang, Y. Hu and C. Dong, Forming Process, Microstructure, and Mechanical Properties of Thin-Walled 316L Stainless Steel Using Speed-Cold-Welding Additive Manufacturing, Metals (Basel), 2019 https://doi.org/10.3390/met9010109

    Article  Google Scholar 

  12. A.V. Nemani, M. Ghaffari and A. Nasiri, Comparison of Microstructural Characteristics and Mechanical Properties of Shipbuilding Steel Plates Fabricated by Conventional Rolling versus Wire Arc Additive Manufacturing, Addit. Manuf., 2020, 32, p 101086. https://doi.org/10.1016/j.addma.2020.101086

    Article  CAS  Google Scholar 

  13. M. Ghaffari, A.V. Nemani and A. Nasiri, Interfacial Bonding Between a Wire Arc Additive Manufactured 420 Martensitic Stainless Steel Part and Its Wrought Base Plate, Mater. Chem. Phys., 2020, 251, p 123199. https://doi.org/10.1016/j.matchemphys.2020.123199

    Article  CAS  Google Scholar 

  14. A.V. Nemani, M. Ghaffari and A. Nasiri, On the Post-Printing Heat Treatment of a Wire Arc Additively Manufactured ER70S Part, Materials (Basel), 2020 https://doi.org/10.3390/ma13122795

    Article  Google Scholar 

  15. X. Zhang, Q. Zhou, K. Wang, Y. Peng, J. Ding, J. Kong and S. Williams, Study on Microstructure and Tensile Properties of High Nitrogen Cr-Mn Steel Processed by CMT Wire and Arc Additive Manufacturing, Mater. Des., 2019, 166, p 107611. https://doi.org/10.1016/j.matdes.2019.107611

    Article  CAS  Google Scholar 

  16. J.P. Oliveira, A.D. LaLonde and J. Ma, Processing Parameters in Laser Powder Bed Fusion Metal Additive Manufacturing, Mater. Des., 2020, 193, p 108762. https://doi.org/10.1016/j.matdes.2020.108762

    Article  CAS  Google Scholar 

  17. J.P. Oliveira, T.G. Santos and R.M. Miranda, Revisiting Fundamental Welding Concepts to Improve Additive Manufacturing: From Theory to Practice, Prog. Mater. Sci., 2020, 107, p 100590. https://doi.org/10.1016/j.pmatsci.2019.100590

    Article  CAS  Google Scholar 

  18. L.N. Carter, C. Martin, P.J. Withers and M.M. Attallah, The Influence of the Laser Scan Strategy on Grain Structure and Cracking Behaviour in SLM Powder-Bed Fabricated Nickel Superalloy, J. Alloys Compd., 2014, 615, p 338–347. https://doi.org/10.1016/j.jallcom.2014.06.172

    Article  CAS  Google Scholar 

  19. D. Wen, P. Long, J. Li, L. Huang and Z. Zheng, Effects of Linear Heat Input on Microstructure and Corrosion Behavior of an Austenitic Stainless Steel Processed by Wire Arc Additive Manufacturing, Vacuum, 2020, 173, p 109131. https://doi.org/10.1016/j.vacuum.2019.109131

    Article  CAS  Google Scholar 

  20. X. Fang, H. Li, X. Li, K. Huang, L. Zhang and B. Lu, Effect of Post Heat Treatment on the Microstructure and Mechanical Properties of Wire-Arc Additively Manufactured A357 Alloy Components, Mater. Lett., 2020, 269, p 127674. https://doi.org/10.1016/j.matlet.2020.127674

    Article  CAS  Google Scholar 

  21. C. Wang, W. Suder, J. Ding and S. Williams, The Effect of Wire Size on High Deposition Rate Wire and Plasma Arc Additive Manufacture of Ti-6Al-4V, J. Mater. Process. Technol., 2021, 288, p 116842. https://doi.org/10.1016/j.jmatprotec.2020.116842

    Article  CAS  Google Scholar 

  22. G.H. Majzoobi, A.H. Mahmoudi and S. Moradi, Ductile to Brittle Failure Transition of HSLA-100 Steel at High Strain Rates and Subzero Temperatures, Eng. Fract. Mech., 2016, 158, p 179–193. https://doi.org/10.1016/j.engfracmech.2016.03.001

    Article  Google Scholar 

  23. ASTM E8M-04, Standard Test Methods for Tension Testing of Metallic Materials [Metric], (West Conshohocken, PA), ASTM International, 2008, doi:https://doi.org/10.1520/E0008M-04.

  24. A. E23-18, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM Int., 2018, www.astm.org.

  25. J. Ge, J. Lin, H. Fu, Y. Lei and R. Xiao, Tailoring Microstructural Features of Wire Arc Additive Manufacturing 2Cr13 Part via Varying Inter-Layer Dwelling Time, Mater. Lett., 2018, 232, p 11–13. https://doi.org/10.1016/j.matlet.2018.08.037

    Article  CAS  Google Scholar 

  26. N. Sridharan, M.W. Noakes, A. Nycz, L.J. Love, R.R. Dehoff and S.S. Babu, On the Toughness Scatter in Low Alloy C-Mn Steel Samples Fabricated Using Wire Arc Additive Manufacturing, Mater. Sci. Eng. A, 2018, 713, p 18–27. https://doi.org/10.1016/j.msea.2017.11.101

    Article  CAS  Google Scholar 

  27. B. Shassere, A. Nycz, M.W. Noakes, C. Masuo and N. Sridharan, Correlation of Microstructure and Mechanical Properties of Metal Big Area Additive Manufacturing, Appl. Sci., 2019 https://doi.org/10.3390/app9040787

    Article  Google Scholar 

  28. A. Waqas, X. Qin, J. Xiong, C. Zheng and H. Wang, Analysis of Ductile Fracture Obtained by Charpy Impact Test of a Steel Structure Created by Robot-Assisted GMAW-Based Additive Manufacturing, Metals (Basel), 2019 https://doi.org/10.3390/met9111208

    Article  Google Scholar 

  29. Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.-L. Wang and Z.W. Zhang, Effects of Microstructure on Crack Resistance and Low-Temperature Toughness of Ultra-Low Carbon High Strength Steel, Int. J. Plast., 2019, 116, p 203–215. https://doi.org/10.1016/j.ijplas.2019.01.004

    Article  CAS  Google Scholar 

  30. G. Chen, H. Luo, H. Yang, Z. Han, Z. Lin, Z. Zhang and Y. Su, Effects of the Welding Inclusion and Notch on the Fracture Behaviors of Low-Alloy Steel, J. Mater. Res. Technol., 2019, 8(1), p 447–456. https://doi.org/10.1016/j.jmrt.2018.04.005

    Article  CAS  Google Scholar 

  31. X. Xu, S. Ganguly, J. Ding, S. Guo, S. Williams and F. Martina, Microstructural Evolution and Mechanical Properties of Maraging Steel Produced by Wire+arc Additive Manufacture Process, Mater. Charact., 2017, 5, p 10.

    Google Scholar 

  32. A. Pineau, A.A. Benzerga and T. Pardoen, Failure of Metals I: Brittle and Ductile Fracture, Acta Mater., 2016, 107, p 424–483. https://doi.org/10.1016/j.actamat.2015.12.034

    Article  CAS  Google Scholar 

  33. N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor and A.P. Gerlich, Influence of Martensite-Austenite (MA) on Impact Toughness of X80 Line Pipe Steels, Mater. Sci. Eng. A, 2016, 662, p 481–491. https://doi.org/10.1016/j.msea.2016.03.095

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chair (CRC) program, Memorial University of Newfoundland, and Dalhousie University for sponsoring this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Rafieazad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafieazad, M., Nemani, A.V., Ghaffari, M. et al. On Microstructure and Mechanical Properties of a Low-Carbon Low-Alloy Steel Block Fabricated by Wire Arc Additive Manufacturing. J. of Materi Eng and Perform 30, 4937–4945 (2021). https://doi.org/10.1007/s11665-021-05568-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05568-9

Keywords

Navigation