Skip to main content

Advertisement

Log in

Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the current study, the additive manufacturing of nylon by fused deposition modeling is conducted based on statistical analysis. Besides, the aim of this study is the influence of process parameters, namely layer thickness (0.15 mm-0.35 mm), infill percentage (15-55%), and the number of contours (2-6) on the maximum failure load, parts weight, elongation at break, and build time. The experiment approach was used to optimize process parameters based on the statistical evaluates to reach the best objective function. The minimum value of build time and maximize of the failure load were considered as objective functions. The response surface method is regarded as an optimization process parameter, and optimum conditions were studied by experimental research to evaluate efficiency. Based on the results, the layer thickness is the significant primary variable for all responses. The experimental evaluation showed that the maximum values of failure load and elongation were obtained by changing the layer thickness from the lowest to the highest. By reduction in layer thickness at the same printing speed, the cooling rate increases, which results in greater strength and less elongation. As a result, it could be concluded that by increasing the number of contour layers from 2 to 6, the maximum failure force increased 42%. Increasing the contours due to the similar effect to increasing the infill density, increases the failure force and production time, which is also confirmed by the ANOVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Wojtyła, P. Klama and T. Baran, Is 3D Printing Safe? Analysis of the Thermal Treatment of Thermoplastics ABS, PLA, PET and Nylon, J. Occup. Environ. Hyg., 2017 https://doi.org/10.1080/15459624.2017.1285489

    Article  Google Scholar 

  2. S. Singh, S. Ramakrishna and R. Singh, Material Issues in Additive Manufacturing: A Review, J. Manuf. Process., 2017, 25, p 185–200. https://doi.org/10.1016/j.jmapro.2016.11.006

    Article  Google Scholar 

  3. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. Part B, 2018, 143, p 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  4. P.M. Bhatt, A.M. Kabir, M. Peralta, H.A. Bruck and S.K. Gupta, A Robotic Cell for Performing Sheet Lamination-Based Additive Manufacturing, Addit. Manuf., 2019, 27, p 278–289.

    Google Scholar 

  5. O.A. Peverini, G. Addamo, M. Lumia, G. Virone, F. Calignano, M. Lorusso et al., Additive Manufacturing of Ku/K-Band Waveguide Filters: A Comparative Analysis Among Selective-Laser Melting and Stereo-Lithography, IET Microwav. Antennas Propag., 2017, 11, p 1936–1942.

    Article  Google Scholar 

  6. R. Paul and S. Anand, Process Energy Analysis and Optimization in Selective Laser Sintering, J. Manuf. Syst., 2012, 31, p 429–437.

    Article  Google Scholar 

  7. H.R. Abedi, A.Z. Hanzaki, M. Azami, M. Kahnooji and D. Rahmatabadi, The High Temperature Flow Behavior of Additively Manufactured INCONEL 625 Superalloy, Mater. Res. Express, 2019, 6, p 116514. https://doi.org/10.1088/2053-1591/ab44f6

    Article  CAS  Google Scholar 

  8. A.S. Patil, V.D. Hiwarkar, P.K. Verma and R.K. Khatirkar, Effect of TiB2 Addition on the Microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated Through Direct Metal Laser Sintering (DMLS), J. Alloys Compd., 2019, 777, p 165–173.

    Article  CAS  Google Scholar 

  9. K. Vithani, A. Goyanes, V. Jannin, A.W. Basit, S. Gaisford and B.J. Boyd, An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-Based Drug Delivery Systems, Pharm. Res., 2019, 36, p 4.

    Article  Google Scholar 

  10. T.W. Kerekes, H. Lim, W.Y. Joe and G.J. Yun, Characterization of Process–Deformation/Damage Property Relationship of Fused Deposition modeling (FDM) 3D-Printed Specimens, Addit. Manuf., 2019, 25, p 532–544.

    Google Scholar 

  11. S.C. Daminabo, S. Goel, S.A. Grammatikos, H.Y. Nezhad and V.K. Thakur, Fused Deposition Modeling-Based Additive Manufacturing (3D printing): Techniques for Polymer Material Systems, Mater. Today Chem., 2020, 16, p 100248. https://doi.org/10.1016/j.mtchem.2020.100248

    Article  CAS  Google Scholar 

  12. R. Melnikova, A. Ehrmann and K. Finsterbusch, 3D Printing of Textile-Based Structures by Fused Deposition Modelling (FDM) with Different Polymer Materials, IOP Conf. Ser.: Mater. Sci. Eng., 2014, 62, p 012018. https://doi.org/10.1088/1757-899X/62/1/012018

    Article  CAS  Google Scholar 

  13. J.W. Stansbury and M.J. Idacavage, 3D Printing with Polymers: Challenges Among Expanding Options and Opportunities, Dent. Mater., 2015, 32, p 54–64. https://doi.org/10.1016/j.dental.2015.09.018

    Article  CAS  Google Scholar 

  14. X. Wang, M. Jiang, Z. Zhou, J. Gou and D. Hui, 3D Printing of Polymer Matrix Composites: A Review and Prospective, Compos. Part B Eng., 2017, 110, p 442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  15. Q. Sun, G.M. Rizvi, C.T. Bellehumeur and P. Gu, Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments, Rapid Prototyp. J., 2008, 14, p 72–80

    Article  Google Scholar 

  16. B. Berman, F.G. Zarb and W. Hall, 3-D Printing: The New Industrial Revolution, Bus Horiz., 2012, 55, p 155–162. https://doi.org/10.1016/j.bushor.2011.11.003

    Article  Google Scholar 

  17. J. Martínez, J. L. Diéguez, A. Pereira and J. A. Pérez, Modelization of Surface Roughness in FDM Parts, AIP Conf. Proceed., 2012, 1431, p 849. https://doi.org/10.1063/1.4707643

    Article  Google Scholar 

  18. G. Dong, G. Wijaya, Y. Tang and Y.F. Zhao, Optimizing Process Parameters of Fused Deposition Modeling by Taguchi method for the Fabrication of Lattice Structures, Addit. Manuf., 2018, 19, p 62–72. https://doi.org/10.1016/j.addma.2017.11.004

    Article  Google Scholar 

  19. S. Mahmood, A.J. Qureshi and D. Talamona, Taguchi Based Process Optimization for dimension and Tolerance Control for Fused Deposition Modelling, Addit. Manuf., 2018 https://doi.org/10.1016/j.addma.2018.03.009

    Article  Google Scholar 

  20. A.K. Mohanty, Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid), ACS Omega, 2018 https://doi.org/10.1021/acsomega.8b00129

    Article  Google Scholar 

  21. X. Liu, M. Zhang, S. Li, L. Si, J. Peng and Y. Hu, Mechanical Property Parametric Appraisal of Fused Deposition Modeling Parts Based on the GRAY Taguchi Method, Int. J. Adv. Manuf. Technol., 2016 https://doi.org/10.1007/s00170-016-9263-3

    Article  Google Scholar 

  22. M. Moradi, S. Meiabadi and A. Kaplan, 3D Printed Parts with Honeycomb Internal Pattern by Fused Deposition Modelling; Experimental Characterization and Production Optimization, Met. Mater. Int., 2019, 25, p 1312–1325. https://doi.org/10.1007/s12540-019-00272-9

    Article  Google Scholar 

  23. M. Moradi, A. Aminzadeh, D. Rahmatabadi and A. Hakimi, Experimental Investigation on Mechanical Characterization of 3D Printed PLA Produced by Fused Deposition Modeling (FDM), Mater. Res. Express, 2021 https://doi.org/10.1088/2053-1591/abe8f3

    Article  Google Scholar 

  24. Y. Zhang, C. Purssell, K. Mao and S. Leigh, A Physical Investigation of Wear and Thermal Characteristics of 3D Printed Nylon Spur Gears, Tribol. Int., 2020, 141, p 105953. https://doi.org/10.1016/j.triboint.2019.105953

    Article  CAS  Google Scholar 

  25. M. Algarni, The Influence of Raster Angle and Moisture Content on the Mechanical Properties of PLA Parts Produced by Fused Deposition Modeling, Polymers, 2021, 13, p 237. https://doi.org/10.3390/polym13020237

    Article  CAS  Google Scholar 

  26. J. Lee, J. An and C.K. Chua, Fundamentals and Applications of 3D Printing for Novel Materials, Appl. Mater. Today, 2017, 7, p 120–133. https://doi.org/10.1016/j.apmt.2017.02.004

    Article  Google Scholar 

  27. C.R. Garcia, J. Correa, D. Espalin, J.H. Barton, R.C. Rumpf, R. Wicker and V. Gonzalez, 3D Printing of Anisotropic Metamaterials, Prog. Electromagn. Res. Lett., 2012, 34, p 75–82. https://doi.org/10.2528/PIERL12070311

    Article  Google Scholar 

  28. U.M. Dilberoglu, B. Gharehpapagh, U. Yaman and M. Dolen, The Role of Additive manufacturing in the Era of Industry 40, Procedia Manuf., 2017, 11, p 545–554. https://doi.org/10.1016/j.promfg.2017.07.148

    Article  Google Scholar 

  29. R. Singh and S. Singh, Development of Nylon Based FDM Filament for Rapid Tooling Application, J. Inst. Eng. Ser. C, 2014, 95, p 103–108.

    Article  Google Scholar 

  30. S.F. Sunny, G.H. Gleason and A.S. Malik, Comparison of Numerical Methods for Fluid-Structure Interaction Simulation of Fused Deposition Modeled Nylon Components, Procedia Manuf., 2019, 34, p 516–527. https://doi.org/10.1016/j.promfg.2019.06.215

    Article  Google Scholar 

  31. R. Singh and S. Singh, Experimental Investigations for Statistically Controlled Solution of FDM Assisted Nylon6-Al-Al2O3replica Based Investment Casting, Mater. Today Proc., 2015, 2, p 1876–1885. https://doi.org/10.1016/j.matpr.2015.07.139

    Article  CAS  Google Scholar 

  32. K.G. Mostafa, C. Montemagno and A.J. Qureshi, Strength to Cost Ratio Analysis of FDM Nylon 12 3D Printed Parts, Procedia Manuf., 2018, 26, p 753–762. https://doi.org/10.1016/j.promfg.2018.07.086

    Article  Google Scholar 

  33. M. Moradi, M.K. Moghadam, M. Shamsborhan, M. Bodaghi and H. Falavandi, Post-Processing of FDM 3d-Printed Polylactic Acid Parts by Laser Beam Cutting, Polymers (Basel), 2020, 12, p 550. https://doi.org/10.3390/polym12030550

    Article  CAS  Google Scholar 

  34. J. Nagendra, M.S.G. Prasad, S. Shashank, N. Vijay, S.M. Ali and V. Suresh, Nylon-aramid Polymer Composite as Sliding Liner for Lube-Less Sliding Bearing by Fused Deposition Modeling, AIP Conf. Proc., 2019, 2057(1), p 020047. https://doi.org/10.1063/1.5085618

    Article  CAS  Google Scholar 

  35. J. Nagendra, M.S.G. Prasad, S. Shashank and A.S. Md, Comparison of Tribological Behavior of Nylon Aramid Polymer composite Fabricated by Fused Deposition Modeling and Injection Molding Process, Int. J. Mech. Eng. Technol., 2018, 9, p 720–728.

    Google Scholar 

  36. M. Moradi, M. Karami Moghadam, M. Shamsborhan and M. Bodaghi, The Synergic Effects of FDM 3D Printing Parameters on Mechanical Behaviors of Bronze Poly Lactic Acid Composites, J. Compos. Sci., 2020, 4, p 17. https://doi.org/10.3390/jcs4010017

    Article  CAS  Google Scholar 

  37. V.D. Prasada, P. Rajiv and V.N. Geethika, Materials Today: Proceedings Effect of Fused Deposition Modelling (FDM) process Parameters on Tensile Strength of Carbon fibre PLA, Mater. Today Proc., 2019, 18, p 2012–2018. https://doi.org/10.1016/j.matpr.2019.06.009

    Article  CAS  Google Scholar 

  38. S. Nori Kamoona, S. H. Masood and O.A. Mohamed, Experimental Investigation on Flexural Properties of FDM Processed Nylon 12 Parts using RSM, IOP Conf. Ser.: Mater. Sci. Eng., 2018, 377, p 012137. https://doi.org/10.1088/1757-899X/377/1/012137

    Article  Google Scholar 

  39. M. Vishwas, C.K. Basavaraj and M. Vinyas, Experimental Investigation using Taguchi Method to Optimize Process Parameters of Fused Deposition Modeling for ABS and Nylon Materials, Mater. Today Proc., 2018, 5, p 7106–7114. https://doi.org/10.1016/j.matpr.2017.11.375

    Article  CAS  Google Scholar 

  40. S. Kumar, P. Ranjeet and K. Sahu, Optimization of Fused Deposition Modeling process parameters Using a fuzzy Inference System Coupled with Taguchi Philosophy, Adv. Manuf., 2017 https://doi.org/10.1007/s40436-017-0187-4

    Article  Google Scholar 

  41. J.M. Chacón, M.A. Caminero, E. García-Plaza and P.J. Núñez, Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and their Optimal Selection, Mater. Design, 2017, 124, p 143–157. https://doi.org/10.1016/j.matdes.2017.03.065

    Article  CAS  Google Scholar 

  42. M. Moradi and H. Abdollahi, Statistical Modelling and Optimization of the Laser Percussion Microdrilling of thin sheet stainless steel, Lasers Eng., 2018, 40, p 375–393.

    CAS  Google Scholar 

  43. M. Safari, R. Alves de Sousa and J. Joudaki, Fabrication of Saddle-Shaped Surfaces by a Laser Forming Process: An Experimental and Statistical Investigation, Metals (Basel), 2020, 10, p 883. https://doi.org/10.3390/met10070883

    Article  CAS  Google Scholar 

  44. A. Aminzadeh, A. Parvizi and M. Moradi, Multi-Objective Topology Optimization of Deep Drawing Dissimilar Tailor Laser Welded Blanks; Experimental and Finite Element Investigation, Opt. Laser Technol., 2015 https://doi.org/10.1016/j.optlastec.2019.106029

    Article  Google Scholar 

  45. M. Moradi and M. KaramiMoghadam, High Power Diode Laser Surface Hardening of AISI 4130; statistical Modelling and Optimization, Opt. Laser Technol., 2019, 111, p 554–570. https://doi.org/10.1016/j.optlastec.2018.10.043

    Article  CAS  Google Scholar 

  46. M. Moradi, N. Salimi, M. Ghoreishi, H. Abdollahi, M. Shamsborhan, J. Frostevarg et al., Mass Balance Parameter Dependencies in Laser Hybrid Arc Welding by Design of Experiments and by a Mass Balance, J. Laser Appl., 2014 https://doi.org/10.2351/1.4866675

    Article  Google Scholar 

  47. M. Moradi, H. Arabi and M. Shamsborhan, Multi-Objective Optimization of High Power Diode Laser Surface Hardening Process of AISI 410 by Means of RSM and Desirability Approach, Optik (Stuttg), 2020, 202, p 163619. https://doi.org/10.1016/j.ijleo.2019.163619

    Article  CAS  Google Scholar 

  48. M. Vahdati, M. Moradi and M. Shamsborhan, Modeling and Optimization of the Yield Strength and Tensile Strength of Al7075 Butt Joint Produced by FSW and SFSW Using RSM and Desirability Function Method, Trans. Indian Inst. Met., 2020, 73, p 2587–2600. https://doi.org/10.1007/s12666-020-02075-8

    Article  CAS  Google Scholar 

  49. M. Safari, S. Hamidipour, S.H. Elahi and V. Tahmasbi, Creep Age Forming of Aluminum 7075 Tailor-Machined Blanks: Statistical Modeling, Sensitivity Analysis and Multi-objective Optimization, Trans. Indian Inst. Met., 2019 https://doi.org/10.1007/s12666-019-01836-4

    Article  Google Scholar 

  50. M. Safari, H. Mostaan, Kh.H. Yadegari and D. Asgari, Effects of Process Parameters on Tensile-Shear Strength and Failure Mode of Resistance Spot Welds of AISI 201 Stainless Steel, Int. J. Adv. Manuf. Technol., 2016 https://doi.org/10.1007/s00170-016-9222-z

    Article  Google Scholar 

  51. M. Mäkelä, Experimental Design and Response surface Methodology in Energy Applications: A Tutorial Review, Energy Convers. Manag., 2017, 151, p 630–640. https://doi.org/10.1016/j.enconman.2017.09.021

    Article  Google Scholar 

  52. J. Mago, R. Kumar, R. Agrawal, A. Singh and V. Srivastava, Modeling of Linear Shrinkage in PLA Parts Fabricated by 3D Printing Using TOPSIS Method, Addit. Manuf. Join Adv., 2020 https://doi.org/10.1007/978-981-32-9433-2_23

    Article  Google Scholar 

  53. American Society for Testing Materials, ASTM Proceeding 1958 - Volume 58, PRO1958-58, ASTM D638, Standard Test Method for Tensile Properties of Plastics

  54. J. Kiendl and C. Gao, Controlling Toughness and Strength of FDM 3D-Printed PLA components Through the raster layup, Compos. Part B Eng., 2020, 180, p 107562. https://doi.org/10.1016/j.compositesb.2019.107562

    Article  CAS  Google Scholar 

  55. O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Experimental Investigation of Time-Dependent Mechanical Properties of PC-ABS Prototypes Processed by FDM Additive Manufacturing Process, Mater. Lett., 2017, 193, p 58–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Rahmatabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M., Aminzadeh, A., Rahmatabadi, D. et al. Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization. J. of Materi Eng and Perform 30, 5441–5454 (2021). https://doi.org/10.1007/s11665-021-05848-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05848-4

Keywords

Navigation